Pre-Algebra Notes Shaun Carter

Copyright © 2021 Shaun Carter. All rights reserved.

Permission is granted to individual teachers to use this resource in their classes, and to distribute copies to their students for the purpose of instruction. Do not distribute otherwise without permission.

This resource is pre-release and is still a work in progress. All contents are subject to change.

Downloads are available from https://primefactorisation.com/.

Version 0.1. July 11, 2021.

1.1 Integers and Absolute Value

The		are the numbers y	rou can count to,	starting from	·
The	a	re the numbers yo	u can count to, s	tarting from $_{-}$	
The This means the	are the num	bers you can count e the natural numl	to, but you're als pers and their	o allowed to co	ount, as well as zero.
A	number is any	number	than zero. A	A	number is any
number	_ than zero. A on	a number line.	in front of a	a number mea	ans that it has the
< <u> </u>	+ + +)	+ + +	$\vdash \vdash \vdash \vdash \rightarrow$
The line. The symbo	of for absolute v	a number is the ralue is	of a either	number from side of a num	zero on a number ber.
Evaluate each $ 7 $	of the absolute	e value expressions $\left -7\right $	-4		9
We can use the order of number to the	symbols rs. On a numbe _•	(less than), r line, lesser numb	(greater than), a pers are to the	and (eo	quals) to show the reater numbers are
Example Write =, < or	r > to correctly	indicate the order	r of each pair of i	ntegers.	
9	2	-4	1	3	-8
5	-5	-7	-2	8	8

1.2 Integer Operations

The _______ of a set of numbers is the result of their _______.
The _______ is ______, because its sum with any other number is the other number. A positive number and its negative are each the _______ (or opposite) of the other because they sum to ______.
Example

-4 + 9	+ + + + + + + + + + + + + + + + + + +		
	-10-9-8-7-6-5-4-3-2-1 (1 2 3 4 5	6 7 8 9 10
Use tiles to evaluate	he sum.		
8 + (-11)			

The ______ of two numbers is the result of their ______, which is the inverse of ______. This means we can subtract a number by adding its ______.

Example

Use tiles to evaluate the difference.

5 - 7

Use the number line to evaluate the difference.

-3 - (-12)

(12) (12)

Write each difference as a sum. Then evaluate them.

 $6 - (-9) \qquad -8 - (-4) \qquad -5 - (-11)$

The ______ of a set of numbers is the result of their ______, which represents repeated ______. For two factors, one factor ______ how many times the other factor is ______.

The ______ of two numbers is the result of their ______, which is the ______ of multiplying. It asks what to multiply the ______ (second number) by to get the ______ (first number).

Example Use the number line	e to evaluate each quotient.
$\frac{-15}{-3}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{12}{-6}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notice that multiplying or dividing by a negative ______ the sign (or direction) of the result. Therefore, the product or quotient of two ______ numbers is ______.

Example Evaluate each	product and quotient.			
$5\cdot 7$	$(-6) \cdot 9$	$8 \cdot (-4)$	$(-11) \cdot (-12)$	
$\frac{56}{8}$	$\frac{-91}{7}$	$\frac{64}{-4}$	$\frac{-42}{-14}$	

1.3 Rational Numbers

Α	is a numbe	r written as the ratio (quo	tient, division) of two numbers. It contains
a	on the to	op and a	on the bottom.
A		is a number which can be	written as a fraction using
Example Write each	as a fraction to	o show that it is a rational	number.
-1	19	2.8	$0.\overline{3}$
In general:	• All	are rational.	
	• All	a	re rational.
	• All	are	rational.
Fractions are_		if they represent the same	ne number.
Example			
Use the frac	ction bars to sl	now that $\frac{2}{3}$ and $\frac{8}{12}$ are equ	iivalent.
$\frac{2}{3}$			
$\frac{8}{12}$			
A fraction ca	n be	by dividing both	the numerator and denominator by their
Example Simplify eac	ch of the follow	ving fractions.	
	$\frac{10}{35}$	$\frac{20}{32}$	

Unit 1: Integers and Rational Numbers

Pre-Algebra Notes

Fractions with different denominators are difficult to _____ and _____, so its useful to write them with a ______. The ______, which is the ______ of the denominators, is preferred.

$\frac{2}{5}$				 			 							 	 	 	 			 		
$\frac{3}{7}$			 			 								 		 	 	 	 			
ite $\frac{3}{4}, \frac{5}{2}$ and	$\frac{2}{2}$ in asc	endi	ng	(lea	nst 1	to g	gre	ate	st)	or	der											
rite $\frac{3}{4}$, $\frac{5}{6}$ and	$\frac{2}{3}$ in asc	endi	ng	(lea	ast '	to g	gre	ate	st)	or	der	·.										
Vrite $\frac{3}{4}$, $\frac{5}{6}$ and	$\frac{2}{3}$ in asc	endi	ng	(lea	ıst '	to ş	gre	ate	st)	or	der	-										
Write $\frac{3}{4}$, $\frac{5}{6}$ and	$\frac{2}{3}$ in asc	endi	ng	(lea	ıst '	to į	gre	ate	st)	or	der	·-										

sum of an integer and a proper fraction; or as an ______, with a numerator

_____ than the denominator.

1.4 Adding and Subtracting Fractions

Fractions can be added or subtracted as long as they have a ______, by adding or subtracting the ______ and keeping the same ______.

Example		
Evaluate each of the	following.	
$\frac{5}{7} + \frac{4}{7}$	$\frac{1}{4} - \frac{3}{4}$	$\frac{1}{10} - \frac{7}{10} + \frac{9}{10}$
Example Use the fraction bars	s to represent $\frac{3}{4}$ and $\frac{1}{6}$. Then	find the sum of the fractions.
+		
=		

Example

Evaluate each of the following.

$$\frac{9}{10} - \frac{18}{25} \qquad \qquad \frac{2}{3} + \frac{4}{5}$$

 $2\frac{5}{8} - 4\frac{1}{4}$

Example 3 Shade the region with dimensions $\frac{3}{5} \times \frac{4}{7}$. $\overline{5}$ How many equally sized sections make the 1 unit square? 4 $\overline{7}$ How many equally sized sections are in the shaded region? 1 What fraction of the 1 unit square is shaded? To multiply fractions, multiply the ______ to get the resulting ______, and multiply the to get the resulting . If multiplying an ______ by a fraction, write it as a fraction with ______ for the denominator. If multiplying a ______, write it as an first. Example Evaluate each product. 4 3 $\left(-\frac{3}{10}\right)\left(\frac{20}{9}\right)$ $2\frac{4}{5} \times \frac{1}{7}$ $\overline{9}$ $\overline{8}$ The ______ is _____ because its product with any other number is the other number. The ______ (or multiplicative inverse) of a number is another number which multiplies it to result in _____.

Multiplying and Dividing Fractions 1.5

— Example ———]
Show that these num	abers are reciprocals.		
$\frac{5}{6}$ and $\frac{6}{5}$	$\frac{1}{7}$ and 7	$1\frac{1}{2}$ and $\frac{2}{3}$	

The ______ of a proper or improper fraction can be found by ______ the numerator and denominator.

_____ by a number is equivalent to ______ by its ______

1.6 Rational Number Equivalents

Decimals and Percents

"Percent" literally me	ans to	_, so 100% is equal to	·
• Convert percent	to decimal:		
• Convert decimal	to percent:	<u>.</u>	
Example Convert the percent	ages to decimal numbers.		
40%	83.1%	275%	
Convert the decima	l numbers to percentages.		
0.7	0.042	4.2	
Fractions to Decimals			

,		, a	can be written as an	All	ŀ
·	as	creating a	We can do this by	or a	C
				Example	Г
		a calculator.	lecimal form without using	Write each fraction in	
		₄ 3	11	3	
		$^{4-}_{4}$	$\overline{25}$	$\frac{1}{5}$	
		tor.	lecimal form using a calcula	Write each fraction in	
		49	8	97	
		$\overline{15}$	11	$\overline{80}$	
		$4\frac{3}{4}$ tor. $\frac{49}{15}$	$\frac{11}{25}$ lecimal form using a calcula $\frac{8}{11}$	$\frac{3}{5}$ Write each fraction in $\frac{97}{80}$	

Pre-Algebra Notes

Decimals to Fractions

Each	after the decimal	point represents	by a larger power of ten.
0.1 =	0.01 =	0.001 =	0.0001 =
Any	decima	al can be written as	a The number of
after th	ne decimal point tells us	how many	the denominator should have.
Example Write each as a	fraction		
0.65	3.4	0.425	1.012
For	, we can u	use the property that	$0.\overline{9} = 0.999999 = \$
$0.\overline{1} =$	$0.\overline{1}$	=	$0.\overline{1} =$
Example Write each as a	fraction.		
$0.\overline{6}$	$0.\overline{45}$		$0.\overline{259}$
$0.7\overline{3}$	$0.11\overline{8}$		$0.1\overline{28}$

2.1 Positive and Negative Exponents

An expression in the	form can be used to repres	sent repeated The
$_$, <i>a</i> , is the v	alue to be multiplied, and the	$_$, m , is the number of a 's being
multiplied. We can re	ad the expression as " a to the	of <i>m</i> ".
Here are some of the	powers when the base is 3:	
Example		
Write the expressio	ns in expanded form, and then evaluated	ate them.
3^4	4^3	11^{2}
Write the expressio	ns in expanded form.	
x^6	u^5	a^4
Write the expressio	ns in exponent form.	ũ
$7 \cdot 7 \cdot 7$	$12\cdot 12\cdot 12\cdot 12\cdot 12$	$x \cdot x$
If the exponent is	, we need to repeat the	of multiplication, which is
. If the b	ase is an integer, this usually results	in a .
Example		
Write the expressio	ns in expanded form, and then evaluate	ate them.
3^{-2}	2^{-5}	10^{-3}
Write the expressio	ns in expanded form.	
x^{-4}	y^{-2}	b^{-7}
Write the expressio	ns in exponent form.	
1	1	1
$\overline{6\cdot 6\cdot 6}$	$\overline{9 \cdot 9 \cdot 9 \cdot 9}$	$\overline{y\cdot y\cdot y\cdot y\cdot y\cdot y}$

2.2 Exponent Rules with the Same Base

Example

Write these expressions in expanded form, then simplify as single exponents.

 $3^5 \cdot 3^2$

 $\frac{5^9}{5^3}$

Rule 1: The Exponent Product Rule

Multiplying expressions with the same base is

equivalent to ____

Rule 2: The Exponent Quotient Rule

Dividing expressions with the same base is equivalent to

Example

Simplify each using the Exponent Product Rule. $2^8 \cdot 2^3$ $7^6 \cdot 7^{13}$ $x^5 \cdot x^9$ Simplify each using the Exponent Quotient Rule. $\frac{6^{14}}{6^5}$ $\frac{4^3}{4^8}$ $\frac{t^{10}}{t^7}$

Example

Write these expressions in expanded form, then simplify using single **positive** exponents.

 $(2^3)^4$

 a^{-5}

Rule 3: The Exponent Power Rule

Raising a base to a power then another is equivalent

to _

Rule 4: The Negative Exponent Rule

Changing the sign of an exponent is equivalent to

taking the of the expression.

Example						
Simplify each using the Exponent Power Rule.						
$(3^4)^2$	$(10^5)^3$	$(b^7)^6$				
Write using a positive expone	ent.	Write without using a fraction.				
5-7		1				
0		$\overline{e^{11}}$				

Special Exponent Values

Any exponential expression with zero for the exponent

(and the base is not zero) ______.

Any exponential expression with one for the exponent

 $s^4t^5\cdot s^2$

 t^2

Example

Simplify each expression with a positive exponent. State which rule is used in each step.

$$\frac{t^8}{t^{11}} \cdot t^5 \qquad \qquad s^5 \left(s^4\right)^7$$

$$\frac{(a^2)^3}{a^{13}} \qquad \qquad \frac{b^{22}}{(b^2 \cdot b^4)^3}$$

 $\frac{x^5y^2}{x^4y^8}$

Example

Simplify each expression.

 $a^3b^5 \cdot a^7b$

2.3 Exponent Rules with the Same Exponent

Example

Write these expressions in expanded form, then simplify each using a single base.

 $2^4 \cdot 3^4$

 $\frac{12^5}{4^5}$

Rule 5: The Base Product Rule

Multiplying expressions with the same exponent is

equivalent to _

Rule 6: The Base Quotient Rule

Dividing expressions with the same exponent is

equivalent to ____

ExampleSimplify each of the following. Write your answer as a single exponent. $3^7 \cdot 5^7$ $2^4 \cdot 9^4$ $3^7 \cdot 5^7$ $2^4 \cdot 9^4$ Simplify and evaluate each of the following. $(\frac{(2^5 \cdot 3)^3}{2^{11} \cdot 3^2}$ $\frac{10^2 \cdot 10^4 \cdot 5}{5^7}$ Simplify each of the following. Don't use fractions for your final expressions. $(\frac{(ab)^2}{b^5}$ $\frac{(3x)^4}{x^5}$

2.4 Scientific Notation

The _____ number system is base _____, which means each _____ corresponds to a different power of ten.

- If n is _____, then 10^n is 1 shifted n place values to the _____.
- If n is _____, then 10^n is 1 shifted |n| place values to the _____.

-	au1011.		
10^{5}	10^{-4}	10^{3}	
Write as an exponent	c of 10:		
0.000001	10000000	0.01	
	is a way of writing numbers	s which uses	_multiplied
by a	The leading digits alwa	uys have a	
before the decimal poin	t, with the power of ten used t	c shift the	
Scientific notation with	powers can repre	sent numbers, a	nd scientific
notation with	powers can represent	numbers.	
Example			
Write in ordinary dec	cimal notation:		
Write in ordinary dec 7.482×10^5	timal notation: 5.213×10^{-4}	3.9742×10^3	
Write in ordinary dec 7.482×10^5 Write in scientific not	tation: 5.213×10^{-4}	3.9742×10^{3}	
Write in ordinary dec 7.482×10^5 Write in scientific not 0.00000358	tation: 5.213×10^{-4} 5.213×10^{-4}	3.9742×10^3 0.0882	
Write in ordinary dec 7.482×10^5 Write in scientific nor 0.00000358 These are not in value	tation: 5.213×10^{-4} tation: 34910000 d scientific notation. Correct the	3.9742×10^3 0.0882 em.	

The exponent on the ten is sometimes called the	To compare two
numbers in scientific notation, compare the	first. If these are the
same, the numbers have similar size, so we compare their	

Example

Which is larger of 7.452×10^{-6} and 3.529×10^{-2} ?

Compare the sizes of a bacterium with a diameter of 1.5×10^{-6} m, a virus with a diameter of 4.5×10^{-8} m, and a red blood cell with a diameter of 8.2×10^{-6} m.

2.5 Operations in Scientific Notation

To ______ and _____ numbers in scientific notation, the ______ can be treated as ordinary numbers, and the ______ can be simplified using exponent rules. Always check that the answer is in correct ______.

 Example

 Evaluate each of the following.

 $(3.5 \times 10^8) (5 \times 10^{-3})$
 $\frac{1.8 \times 10^{11}}{6 \times 10^7}$
 $(5 \times 10^{-4}) (9 \times 10^{-9})$
 $\frac{5.6 \times 10^5}{8 \times 10^{18}}$

Example

The earth is 1.496×10^{11} m from the sun. Light travels at 3.0×10^8 m each second. How many seconds does it take light from the sun to reach the earth? Use a calculator.

2.6 Square Roots

If	we	want	to	make	a	square	whos	se side	s are
		units 1	long	, we'll	nee	ed			unit
sq	uares	s. T	his	is why	/ n	nultiplyi	ng a	numb	er by
		, 0	r ap	oplying	an	expone	ent of		is
ca	lled			·					

Example

How many unit squares form a square with sides six units long?

$\longleftarrow 6 \text{ units} \longrightarrow$						
1	2	3	4	5	6	
7	8	9	10	11	12	
13	14	15	16	17	18	6 u
19	20	21	22	23	24	nits –
25	26	27	28	29	30	
31	32	33	34	35	36	

The ______ (the opposite) operation of squaring is the ______, which is represented by the ______ symbol $\sqrt{}$. The number underneath a radical is called the ______.

_____ is the number whose square is equal to _____.

Example

What is the side length of a square made from 36 unit squares?

A number which results from squaring a whole number is called a :

$1^2 =$	$5^2 =$	$9^2 =$	$13^2 =$	$17^2 =$
$2^2 =$	$6^2 =$	$10^2 =$	$14^2 =$	$18^2 =$
$3^2 =$	$7^2 =$	$11^2 =$	$15^2 =$	$19^2 =$
$4^2 =$	$8^2 =$	$12^2 =$	$16^2 =$	$20^2 =$

The ______ of a perfect square is a ______. The square root of any other whole number is ______ whole numbers. These square roots can only be ______ when using finite decimal places.

Example

Evaluate $\sqrt{289}$, and give a reason for your answer.

Combining Rational and Irrational Numbers

The sum or product of two rational numbers is

Why this is true:

If two numbers are		, that means they can be represented by	Adding
two fractions makes a _		, and multiplying two fractions makes a	, so the
or	is		

Another way of describing this is to say that the rational numbers are ______ under addition and multiplication. Just like you can't leave a room if it is ______, we can't leave the closed ______ by adding or multiplying.

The sum or product of two irrational numbers is ______ irrational, but not _____

Example

Think of a pair of irrational numbers whose sum is rational.

Think of a pair of irrational numbers whose product is rational.

This means the irrational numbers are ______ under addition or multiplication.

The sum of a rational and irrational number is

The product of a (non-zero) rational number and an irrational number is

Example

Answer true or false. Give a reason for each answer.

The product of a rational number and an irrational number is never irrational.

 $3 + \pi$ is a rational number.

 $\frac{2}{3} \cdot \sqrt{25}$ is irrational, because it is a product of a non-zero rational number and a square root.

2.7 Understanding Irrational Numbers

3.1 The Order of Operations

A	is a combination of	and	which
represents a numerical	Тоа	an expression means to determine	e that overall
value. When evaluating expression	ns, we follow the		

G	
E	, which includes evaluating powers and $\sqrt{evaluating}$ radicals.
MD	and, in order from left-to-right.
AŚ	and, in order from left-to-right.

To show your working clearly, you should write your calculations _____

We use the ______ symbol to indicate that expressions as equivalent. You should always work ______, with all the equals signs written in a ______.

Example	
Evaluate each expression. $4-3(-6)$	
$3(8-3)^2 - 5 \cdot 7$ $\frac{1}{5(-3) + 17}$	

Evaluating Exponents

Example	
Write each expression in expanded form,	and then evaluate.
$(-2)^3$	$(-2)^4$
-2^{3}	-2^{4}

- A negative base to an ______ is always ______.
- A negative base to an ______ is always _____.
- A negative sign not contained in ______ with the base is not part of the

base, and will be evaluated ______ the exponent.

Example

Evaluate each of the expressions. $(-3)^4 + (-4)^3$

$$(-3)^2 + (-3)^3 - 3^4$$

Expressions Represented with Words

related to $+$	related to $-$	related to \times	related to \div			
plus	minus	times	divide			
sum	difference	product	quotient			
addition	subtraction	multiplication	division			
more than	less than	twice, double, triple	half of, third of			
increased by	decreased by	of	split evenly			
- Example Write each description as a numerical expression, then evaluate.						

The quotient of 20 and 4.

Twice the difference of 13 and 9.

25 less than 8.

10 more than the product of 9 and 7.

Half of the sum of 14 and 8.

The sum of 14 and half of 8

7 subtracted from the square root of 16. The square of the quantity 18 minus 7.

3.2 Variables and Substitution

Α	_ is a quantity whose value we	or whose value can
• · ·	A variable is usually represented by a	<u>.</u>
An numbers and op	is an expression which corperations.	ntains as well as
If we know the	values of the variables, we can	_ the variables by replacing them
with their value	es. This turns ani	nto a numerical expression, which
can be	Always surround values with	when substituting.
Example Suppose that $2a + 3b$	$a = 5, b = -7$, and $c = 2$. Evaluate each expressi $\sqrt{b^2 - 4ac}$	ion using these values.
Example		

Write each as an algebraic expression, where value of "a number" is represented by n.

Triple the sum of a number and 5. 10 less than the square of a number.

Evaluate each expression where the value of "a number" is 2.

Evaluate each expression where the value of "a number" is -8.

Example

Penelope's Perfect Pizza sells large pizzas for \$6 each, and also charges \$8 for delivery. Choose a variable to represent the number of pizzas delivered to a customer.

Write an expression representing the total cost to a customer.

Use your expression to find the cost to a customer who orders 4 pizzas.

Parts of an Algebraic Expression

are the j	parts of an expression se	parated by	and	symbols. A term
is often written as a	of a numb	er and variab	les, sometimes with	l
The	_ of a term is the	whie	ch multiplies the $_$	in the
term. The	of the coefficient is deter	rmined by the	e operation	the term.
A	is a term which do	esn't contain a	any variables.	
What are the coeff	the expression $2x^2 + 3xy$ dicients of the terms?	$-7y^{2} + x - 9$	y + 14.	
The coefficient of	x^2 is	The coeffi	icient of y^2 is	
The coefficient of	xy is	The coeff	icient of x is	
The coefficient of	y is			
What is the consta	.nt term?			

3.3 Combining Like Terms

Two expressions are ______ if their values are ______ as each other for any

values of their _____.

c	7x	2x	7x+2	$x \mid 9x$	Wh	at do you notice?
-3						
-1					W1h	at da way wan dan?
2						at do you wonder:
5						
r	3x	3x +	$8 \mid 11x$		Wh	at do you notice?
-2						
L					1171	
1					Wh	at do you wonder?
6						
r	y	6x	4y	6x + 4y	10xy	What do you notice?
-2	3					-
L	5					-
1	-1					- What do you wonder?
3	7					_

Constant terms are also considered to be ______ with each other.

Expressions with like terms can be _____ by _____ into an

_____ single term by adding the ______.

Example

Does 7x + 2x have like terms? Does 3x + 8 have like terms? Does 6x + 4y have like terms?

Example

If these are like terms, simplify them. If they are not, explain why.

6a + 10a

4s - 9t $5y^2 - 12y^2$

 $-2n^2 + 5n$

-3 + 8

Example

Simplify 4x + 5x - 8y + 6y + 7 - 3.

Sums with _____ terms are _____.

Products with _____ factors

.

are_____

Example

Simplify each of the following expressions by combining like terms. 5s + 4t - 8s + 6t 9cd - 2dc 7ab - 6a + 3b + 5ba $3x^2y + 2yx^2 + 9xy^2$ $5x + 7x^2 - x + x^2$

3.4 The Distributive Property

Comple	ete the tab	ble by evalu	ating the	expressions.	What do you notice?
x	x+4	3(x+4)	3x	3x + 12	
-3					
1					What do you wonder?
5					
10					
	I	1 1		1	

The process of applying the distributive property is called ______. The ______

helps us to make sure that each term _____ the parentheses is multiplied by the value _____ the parentheses.

Example		
Distribute each of the expres	ssions.	
5(x+9)	-2(y-7)	7(2n-3)
t(t+7)	-3p(q+5)	2u(3u-5)
-4(3a-5b-9)	2x(x +	3y - 5)

3.5 Factoring

is the op	posite process of	One way to do this is to find the
	, or	
The first factor to find is	the	of all the
Example Factor the following exp	pressions.	
7n - 21	10x + 16	15m - 50
6a - 30	28x + 70	105t + 45
If all the shar Example	e any in comm	non, these are also factors of the GCF.
Factor the following exp $x^2 + 8x$	$y^2 - 12y$	$2a^2 - 14a$
8st + 4t	$12x^3 + 15x^2$	$4a^2b - 7ab$

3.6 Algebraic Reasoning

Much of what we do in ______ is based on the following ______

associative property of addition		if we add three numbers, we can do either addition first
associative property of multiplication		if we multiply three numbers, we can do either multiplication first
commutative property of addition		we can change the order of terms in addition
commutative property of multiplication	7	we can change the order of factors in multiplication
distributive property		we can distribute and factor

Most of the time we don't need to think about these properties to work algebraically. Sometimes, however, we need to ______ our work by ______ our reasoning, using the properties.

We can also use ______ as reasons for our calculations.

Example

Justify the following simplification, giving a reason for each step
3(x-4) + 2(5x+7) = 3(x) + 3(-4) + 2(5x) + 2(7)
$= 3(x) + 3(-4) + (2 \cdot 5)x + 2(7)$
= 3x + (-12) + 10x + 14
= 3x + 10x + (-12) + 14
$= (3+10) \cdot x + (-12) + 14$
$= (3+10) \cdot x + (-12+14)$
= 13x + 2

3.6 Algebraic Reasoning

4.1 Solving Equations

An______is a mathematical statement which says that two ______ are _____. If the equation contains a ______, the value of that ______ which makes the equation (makes the two sides _____) is called a _____. Example Consider the equation $\frac{3x+6}{5} = -3$. Show that x = 8 is **not** a solution. Show that x = -7 is a solution. _____ an equation means to ______ for it. Solving Method 1: Backtracking The ______ method identifies the ______ applied to the variable, then uses _____ to work back to the _____. Example Solve each equation using the backtracking diagram. x + 11 = 76y = 18xx= = = = -5(t-8) = 30x===

The Properties of Equality

addition property of equality	a = b if and only if $a + c = b + c$	
subtraction property of equality	a = b if and only if $a - c = b - c$	
multiplication property of equality	$a = b$ if and only if $a \cdot c = b \cdot c$ (if $c \neq 0$)	
division property of equality	$a = b$ if and only if $\frac{a}{c} = \frac{b}{c}$ (if $c \neq 0$)	

Solving Method 2: Balancing Each Side

We can imagine an equation as a _____ whose two sides perfectly _____. The scale remains ______ as long as we always do the ______. **Example** Use the balance scales to illustrate each equation as you solve them. x + 5 = 124x = 20

Example

Jessica is a member of a gym that charges \$45 for membership, and an extra \$6 for each visit. Jessica has paid \$87 in total to the gym. How many visits has Jessica made to the gym?

Choose and define the variable.

Solve the equation.

Write the problem as an equation.

4.2 Equations with Simplifying

Example

Use the scale to illustrate 3x + 5 + 2x + 7 = 27, and solve it.

Solve 6t - 9 - 8t + 21 = 2.

Solve 7 - 8n + 5n + 12n = 65 + 32.

Example

Use the scale to illustrate 7x + 2 = 4x + 8, and solve it.

Solve 5a = 56 - 2a.

Solve 17 - b = 35 + 2b.

3. If the variable is **repeated on one side**, simplify by _____.

4. Finish solving as using ______.

Example

 Jayden starts jogging at a speed of 2 meters per second. Hailey waits 90 seconds, then starts jogging at a speed of 2.5 meters per second. How long will it take for Hailey to pass Jayden?

 Choose and define the variable.
 Solve the equation.

 Write the problem as an equation.

4.3 Equations with Fractions

Approach 1: Solve while keeping fractions

When	solving	equations	with	,	we	can	still	 them	and	use

to solve them as we would for equations with integers only.

Solve $\frac{2a}{3} + \frac{5}{6} = \frac{4}{3}$. Solve $\frac{2t+11}{4} + \frac{5t}{8} = \frac{16}{5}$.

Approach 2: Eliminate denominators first

Example			
For each list of fractions,	find the lowest commo	on denominator.	
$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}$	$\frac{2}{3}, \frac{1}{5}, \frac{7}{10}$	$rac{5}{4},rac{1}{6},rac{11}{12}$	
Multiply each fraction by	the lowest common d	enominator, and simplify.	
What do you notice?	7	What do you wonder?	
The denominator of a fractio	n can be eliminated by	the fraction by a	
of the denominator. The	is a multiple of	of all the denominators in a set of fractions	s. This
means we can eliminate all	denominators in an e	equation by	by
the of all the frac	tions in the equation.		
Example			
Eliminate the denominate	ors first before solving	the equations.	
Solve $\frac{2a}{3} + \frac{5}{6} = \frac{4}{3}$.	S	Solve $\frac{2t+11}{4} + \frac{5t}{8} = \frac{16}{5}$.	
Which of the two approac	hes did you prefer? W	Vhy?	

4.4 Number of Solutions

A ______ to an equation is a value for the ______ which makes the equation ______. Many equations have ______, but this is not always the case.

Example				
Use the	e table ana	lyze the e	aution $3r + 5$ -	-3r + 7
Obe the				
	LHS	RHS	Solution?	What do you notice?
x	3x + 5	3x + 7	$LHS \stackrel{?}{=} RHS$	
-2				
1				What do you wonder?
4				
9				
			I	
Use the	e table ana	alyze the e	quation $2(x-3)$	y = 2x - 6.
	LHS	RHS	Solution?	What do you notice?
x	2(x-3)	2x - 6	$LHS \stackrel{?}{=} RHS$	
-2				
1				What do you wonder?
4				
9				

If the two sides of an equation differ by a ______, then ______ is a solution.

If the two sides of an equation are _____, then _____ is a solution.

N for linear equations	UMBER OF SOLUTIONS with both sides distribu	ted and simplified
variable term	constant term	type of solution
same coefficient	different constants	
same coefficient	same constant	
different coefficients	N/A	

Example

Determine the number of solutions each equation has. Justify your answers.

3(2x+4) - 2x + 8 = 4(x+5)4x + 3 - 2(x-1) = 5x + 8

2(5x-3) + 4x = 7(2x-1)

4.5 Linear Inequalities

An_	is a statement	similar to an	,	but doesn't use	
	x is less than (not equal to) a		<		
	x is greater than (not equal to) a		<i>~</i>		
	x is less than or equal to a		<i>←</i>		>
	${\boldsymbol x}$ is greater than or equal to ${\boldsymbol a}$		<		>

To add or subtract	To multiply or divide a positive	To multiply or divide a negative
	., .	

Solve each inequality, and	l use a number line to represent the so	olution set.
3y - 5 > 10.	$-8u + 12 \le -4.$	
		<u> </u>
0		0

Example

Ben can save \$180 each week, but he currently owes the bank \$630. He can afford to go on vacation once he has more than \$4500 saved in his bank account. When can Ben afford to go on vacation?

Choose and define the variable.

Solve the inequality.

Write the problem as an inequality.

4.5 Linear Inequalities

5.1 The Pythagorean Theorem

This means that in a right triangle a and b are the lengths of the _____, and c is the length of the _____. It's always a good idea to _____ the sides a, b and c when working a right triangle problem.

5.2 Lengths in Right Triangles

Example

A ship sails 100 miles north from its dock, then turns east and sails 150 miles. How far is the ship from the dock?

5.3 Multi-Step Right Triangle Problems

Example

Example

Find the length of the diagonal d.

5.4 Distances on the Coordinate Plane

Coordinate Plane Review

The _	represents the values of	two with a	Its
	position is value of, and its	position is the value	
An	is written as It too	represents the values of the	
x and	y, in that order, and the of a p	point on the plane.	
The _	is the horizontal line where	·	
The _	is the vertical line where		
The _	is where the axes intersect, at the point	; ·	
The _	are the four regions separated by	the axes.	
<pre>Exa a) b) c) d)</pre>	Write down the coordinates of A , B and C . What variable values does D represent? Plot and label the points $(-4, 1)$, $(4, -3)$ and $(-3, -5)$. Plot and label the point representing $x = 2$ and $y = 6$.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C

Calculating Distances

Example

Consider the distances between A, B, C and D above. What are the two simplest distances to find?

Why are these distances simpler to find than the others?

Pre-Algebra Notes

The between two points is	the same as the	(x_2, y_2)
of a line segment between them	. We can form a	•
with the distance as the		
and horizontal and vertical line segments as	·	
The lengths of these represent the _	$\lim_{x \to \infty} x = (x - x)$	
and y between the two points. The Greek lette	r, Δ can (x_1, y_1)	
be used to mean the a variab	le.	

THE PYTHAGOREAN THEOREM for the distance between points \boldsymbol{d}

Example

Find the distance between $(2,3)$ and $(5,-4)$.	$\begin{array}{c} 5 & y \\ 4 & (2,3) \\ 3 & 2 \\ -2 & -1 \\ -2 & -1 \\ -2 & -1 \\ -2 & -3 \\ -3 & -4 \\ -5 & -1 \\ -$
Find the distance between $(1, -4)$ and $(7, -2)$.	$ \begin{array}{c} 3 & y \\ 2 & y \\ -2 & -1 & -1 & -2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline -2 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ \hline -3 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & $

5.4 Distances on the Coordinate Plane

6.1 Function Rules and Tables

For the function with the rule $y = x^2 - 9$, determine the output for each input. x = 1 x = -3 x = 4.5

Comple	ete the ta	ble f	for the t	function	y = 4x	x - 11.					
	input	x	-3	-2	-1	0	1	2	3	4	5
	output	y									
Complete the table for the function $y = -3x + 5$.											
	input	x	-6	-4	-3	0	1	2	5	7	10
	output	y									
Complete the table for the function $y = x^3$.											
				3	_2	_1	0	1	2	3	4
	input	x	-4	-3	4	-					

6.2 Finding Linear Rules from Tables

A	is a function whose output	LINEAR FUNCTION GENERAL FORM
results from	the input by a constant and	
another	constant. All	
can be written in the	e same	where m and b are constant.
Example Find the constants	m and b for these linear functions.	
y = -3x + 7	$y = \frac{x}{4} - 9$	y = 9x
y = 13 - 7x	y = -4(x - 5)	$y = \frac{3x+4}{6}$
The	between two points of a functio	n is the of the
in the a	nd the in the	

THE RATE OF CHANGE (OF A LINEAR FUNCTION	
Linear functions are functions with a	1	
which is the	in the general form.	

a rule	e for th	e linear funct	tion descri	bed in each	h table.	
input	output					
x	<i>y</i>					
0	7					
1	12					
2	17					
3	22					
input	output					
x	y					
-4	5					
-1	-1					
1	-5					
5	-13					
	1					
input	output					
x	$\begin{vmatrix} y \end{vmatrix}$					
0	8					
8	14					
12	17					
24	26					

To find a rule from linear table:

Step 1. Use the table to calculate the ______. This is ______.

Step 2. Using m and the values for x and y from one point, _____ for _____.

Step 3. Use m and b to ______.

Step 4. Check that the rule is _____ for the values in the table.

6.3 Plotting Function Graphs

An_____, written as _____ has two equivalent meanings:

- The values of the two _____, x and y, in that order.
- The ______ of a point on the coordinate plane.

A _____ describes a relationship between values of x and values of y. This means we can represent a _____ by plotting a _____ on the coordinate plane.

Example

Write the entries from the table as a list of ordered pairs.

Plot a graph of the function on the coordinate plane.

 Example

 Complete the table for the function $y = \frac{x}{4} + 1$.

 $\frac{x}{-4} - 2$ 0
 2
 4
 6

 y 1
 1
 1
 1
 1

 Plot a graph of the function on the coordinate plane.
 -2 2
 4
 6

6.4 Identifying Linear and Nonlinear Functions

А	i	is	а	function	which	is	not	a	
× •	-	TO 1	c.	rancoron	winch	тo	1100	CU.	

	LINEAR FUNCTIONS vs. NONLINEAR FUNCTIONS				
	linear functions	nonlinear functions			
rule	can be written as $y = mx + b$	can't be written as $y = mx + b$			
table	constant rate of change	changing rate of change			
plot	straight line	not a straight line			

Example

Does the rule $y = -\frac{3}{2}(x+4) + 11$ represent a linear function?

Complete the table for the function above. Does this show a linear function?

Plot the function above on the coordinate plane. Does this show a linear function?

Example

Does the rule $y = x^2$ represent a linear function?

Complete the table for the function above. Does this show a linear function?

Plot the function above on the coordinate plane. Does this show a linear function?

7.1 Intercepts

In a graph, an _____ is a point where a function _____ an ____.

An intercept on the *x*-axis is a ______, and on the *y*-axis is a ______.

Example State the intercepts of the graph. Complete the table and plot for $y = -\frac{2x}{5} + 4$. $x \mid -5 \mid 0 \mid 5 \mid 10 \mid 15$	$\begin{array}{c} \begin{array}{c} & 4 \\ 3 \\ 2 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
State the intercepts of the graph. What do you notice? What do you wonder?	
x-intercepts occur when	y-intercepts occur when
Example Find the intercepts of the graph of $y = \frac{2}{3}x + 8$.	

7.2 Slope

Pre-Algebra Notes

Example

Plot the line which passes through the point (5, 6) with slope 2.

What are the intercepts of this line?

The point (9, k) is also on the line. What is k?

Example

What is the slope of the graph of $y = -\frac{1}{3}x + 2$?

What is the *y*-intercept? Plot it on the coordinate plane.

Plot a graph of the function by drawing a line from the y-intercept with the correct slope.

	1	y					
	G						
	4-	-					
	2-	-					
+ +		_	-	-	-		\xrightarrow{x}
-42_	-2-	-	2	_4_	6	8	
<u> </u>	4						
	6						

7.3 Slope-Intercept Form

We have already learned that:

• The	of a graph is t	he same as the		_ of the function.
• The	is the	point where the fu	unction's input is	·
• The	is the	point where the fu	nction's output is _	·
	is the conoral for	SLOPE-INTERCEPT	FORM	
	becau	se m is the	of the graph	
	and $(0,b)$	is the	of the graph.	
A is a such as	a type of graph w A	hich only shows th must be	e most important inf , using a	formation of a function, for straight lines.
Example Find the interce	pts and the slope	, then sketch the g	raph, of the function	y = -4x + 8.
<i>x</i> -intercept:	Sol	ve $mx + b = 0$:		∫y
y-intercept:				
Slope:				
Find the interce	pts and the slope	, then sketch the g	raph, of the function	y = 2x - 6.
<i>x</i> -intercept:	Sol	ve $mx + b = 0$:	↑ <i>y</i>	<i>r</i>
y-intercept:				*
Slope:				
			I	

Pre-Algebra Notes

7.4 Finding Linear Rules from Points

To write down a rule in	form, we need to know the			
Sometimes, we need to use	e other	to find these.		
Example				
Find the y -intercept and the rule for each of	f the described	d lines.		
Slope $m = -3$, passing through $(4, -1)$.	Slope m	$=\frac{2}{5}$, <i>x</i> -intercept at $x = -10$		
Example				
Find a rule for the line shown. \uparrow^y				
(-5,1)				
Find a rule for the line which passes through	h the points (-1 5) and (7 9)		
	ii tiio pointo (1,0) and (1,0).		

Point-Slope Form

Suppose a	(x_1, y_1) is on a line. We	↑
can use (x, y) to represent changes between the poin	on the line. The ts are	y y
Δx	Δy	(x_1, y_1)
If the line has	m , then $\Delta y = m \cdot \Delta x$.	
		x

The POINT-SLOPE FORM of a line with slope m passing through (x_1, y_1) is

Example

a) Write rules for these lines in point-slope form	1.
Slope $m = -2$, passing through $(-5, 7)$.	Slope $m = \frac{3}{4}$, passing through $(8, -2)$.

b) Write each rule in slope-intercept form.

Example

7.5 Standard Form

The STANDARD FORM of the equation of a line is	
• Constants A , B and C are, if possible.	
• <i>A</i> is	
- The equation is, so A , B and C have no common	.
Example	
Do the points $(6,5)$ and $(-2,4)$ lie on the line $5x - 2y = 20$?	

Remember that *x*-intercepts occur when _____, and *y*-intercepts occur when _____.

Example Sketch a graph a	nd find the slope of x	+2y=6.	↑ <i>y</i>	
x-intercept:	y-intercept:	slope:		
				<i>x</i>

To find the ______ for an equation in standard form, we can use the ______ to calculate it, or we can convert the equation to ______.

Example

Check the results of the previous example by writing x + 2y = 6 in slope-intercept form.

Find the slope of 3x - 4y = 8 by writing the rule in slope intercept form.

Example

Convert these linear functions to standard form.

$$y = \frac{2}{3}x - \frac{5}{6} \qquad \qquad y = \frac{3}{4}x + \frac{5}{2}$$

7.5 Standard Form

8.1 Perimeter and Area Review

8.2 Prism Surface Area

The SURFACE AREA OF A PRISM whose base has area B and perimeter P, and height is h

Pre-Algebra Notes

The SURFACE AREA OF A RECTANGULAR with length l, width w, and height h

Example

Find the surface area of a cube with a side length of 11 inches.

8.3 Prism Volume

The ______ of a 3D shape is a measure of the amount of three dimensional ______ it occupies. The volume of a ______ is the product of the area of its ______, and its ______. In a rectangular prism, the area of the ______ is the product of its ______ and _____. This means that its ______ can be found by multiplying its ______, ____, and

8.4 Circles Review

A ______ is a 2D shape such that all its points are the same ______ from its center.

A ______ of a circle is a line segment between the center and a point on the circle. Its length is also called the ______.

A ______ of a circle is a line segment between opposite points on the circle, which passes through the center. Its length, which is double the _____, is also called the _____.

The _____ is the curved length around the circle.

 π , the Greek letter _____, is the ratio of the

_____ to the _____ in every

circle. Its value is an _____ number which

can be approximated using _____.

λ

The CIRCUMFERENCE C of a circle with radius r and diameter d = 2r

The AREA ${\cal A}$ of the interior of a circle with radius r

Example

Find the circumference and area of a circle whose diameter is 6 in. Give answers exactly, and to two decimal places.

Example

Find the area of a circle whose circumference is 24π cm.

8.5 Cylinder Surface Area

Α_			_ is	a E	3D	shape	\sin	ilar t	оа	prism	¹ , with
		for	the b	ases	an	d a sing	gle				
for t	he lat	teral s	urfac	e.							
We	can	still	use	the	S	urface	area	a for	mula	for	prisms,
						Since	the	bases	are	circle	es with
radi	us $r,$	we ha	ve the	e bas	se a	area			ع	and pe	erimeter
(circ	umfe	rence)				<u> </u>					

The SURFACE AREA of a CYLINDER with base radius r and height h

Example

Find the surface area of the cylinder shown.

Example

A cylindrical tin cup has a diameter of 7 cm and a height of 10 cm. What is the area of the tin which forms the cup?

¹Technically, a prism is a type of *polyhedron*, which means all the faces are flat polygons with straight edges. Because a circle is not a polygon, a cylinder is not a polyhedron, which means it can't be a prism.

8.6 Cylinder Volume

Recall that the volume of prism with base area B and height h is ______. A ______ is similar enough to a prism that this rule still holds. We know that the base of a cylinder is a ______, and if its radius is r its base area is ______. By substituting B, we get the formula for the ______ of a ______.

The VOLUME of a CYLINDER with base radius r and height h

Example

Find the volume of the cylinder shown.

Example

Find the capacity of the water trough shown.

8.6 Cylinder Volume

9.1 Measures of Central Tendency

А		is a stat	sistic which aims to $r\epsilon$	present a
value, or the	,	of the data.		
		MEASURES OF CENTRAI	. TENDENCY	
	The	of a set of data is the	of the data val	ues
	divi	ided by the (the nu	ımber) of data values.	
The	of a s	set of data is the	when the data a	re
(for an	odd count), o	r the mean of the	(for a	n even count).
TI	10	_ of a set of data is	value in	the data.
Another useful s	tatistic is_	, which is a meas	ure of the	_ of the data, instead

Complete the dot plot and calculate the mean, median, mode and range for the data: 46, 44, 47, 53, 45, 52, 45, 47, 49, 46, 45.

Example

In the first five basketball games of the season, Alex scores 8, 13, 6, 4 and 7 points. What are his mean and median scores?

In the sixth game, Alex scores 22 points. How does this change his mean and median scores?

Did including 22 in the data have a bigger effect on the mean or the median? Why?

Example

Karissa keeps track of the number of miles she runs each week. Over the last four weeks, she ran 6, 4, 8 and 6 miles respectively.

What is the mean distance Karissa ran each week? What is the median distance?

Without knowing how many miles Karissa runs in the fifth week, what could possibly happen to the mean and median?

9.2 Outliers

An	_ is a value in a data set whose value is	the range of values which could
be expected fro	om the rest of the data. This typically means	are much
or	than the rest of the data.	

Outliers need to be carefully investigated, as they are sometimes the result of ______. If an outlier exists, it's a good idea to find a ______ its value doesn't fit the rest of the data.

Evampla	
Complete the dot plot, and use it to i	identify any outliers for the following data:
,,,,,,	Find the mean and median of the data.
	Find the mean and median with any outliers removed.

In general:

- Outliers can have a ______ effect on the _____.
- Outliers usually have a ______ effect, or even ______ effect, on the ______.

9.3 Scatterplots and Lines of Best Fit

In statistics, a ______ is a characteristic of a person or thing, which can have different values for each person or thing. The data for each person or thing is called an ______. _____ consists of observations of ______ variables.

A ______ is a plot which uses a coordinate plane to represent ______,

with a ______ on each _____. Each observation is plotted as a ______ on the plane.

Scatterplots should always include an appropriate _____, and _____ on each axis with appropriate _____.

		ti the du	ta on	the coc	ordinat	e plan	ie as a	scatte	rplot.		
diameter (in)	$ \text{volume} (\text{ft}^3) $		co †	Dia	meter a	and Vo	lume o	f Black	Cherry	Trees	
16.3	42.6		00								
10.5	16.4	eet)	50 +								
11.0	15.6	oic f									
8.3	10.3	(cul	40 +								
8.6	10.3	ber	20								
14.5	36.3	tim	30								
11.3	24.2	e of	20 +								
11.7	21.3	lum									
13.3	27.4	OA	10 + -								
13.7	25.7		0								
17.9	58.3		0		5		10		15		20
11.2	19.9					diai	meter (inches)			

A ______ is a line we draw on a scatterplot so that it is as ______ as possible to each of the ______ on the scatterplot. The line shows the general ______ of the data.

In statistics, a _____ is a _____ which approximates the _____ between

variables. The line of best fit represents a ______ for our two variables.

For now we'll ______ the line of best fit. In high school, you'll use software or a calculator to do this more precisely.

Example

- 1. Draw the line of best fit for the previous scatterplot.
- 2. Estimate the volume of a black cherry tree with a diameter of 17 inches.
- 3. Estimate the rate of change of the volume of a black cherry tree with respect to its diameter.

¹This is a subset of a dataset available in R, a programming language used by many statisticians. https://search.r-project.org/R/refmans/datasets/html/trees.html

10.1 Probabilities and Prediction

An ______ is a random phenomenon whose ______ is unknown until it occurs.

The ______ of an experiment is the set of all of its possible outcomes.

Example

State the sample space for each of the following.

1. The side shown on a flipped coin.

2. The value rolled on a standard 6-sided die.

An______ is a subset of the sample space, or a collection of outcomes.

The ______ of an event is a number between _____ and _____ inclusively which indicates

how likely an experiment is to produce the _____. Probabilities can be written as _____

_____, or _____.

If P(A) = 0, then event A is _____.

If P(A) = 1, then event A is _____.

If P(A) = 0.5, then event A is ______ to occur or not occur.

Example

A fair coin is flipped. What is the probability of each of the following events?

- A: The coin lands heads up.
- B: The coin lands tails up.
- C: The coin lands either heads or tails up.
- D: The coin turns into a pony.

PROBABILITY of event A in sample space S with equally likely outcomes

Example

What is the probability that the value rolled on a 10-sided die is a prime number?

Is the number more likely or less likely to be prime than not prime?

Example

Two dice are rolled. Complete the table showing the sums of the possible dice rolls. Find the probabilities of the following events:

A: The sum of the two dice is 4.

B: The sum of the two dice is a multiple of 5.

Which sum is most likely to be rolled? What is its probability?

10.2 Experimental Probability

Often it isn't possible to calculate the probabilities of events. Instead, we can ______ an experiment many times, and use the outcomes to ______ the probabilities of the events. These estimates are called ______.

A _____ is an individual performance of an experiment. Increasing the number of trials improves our confidence that the ______ probability is close to the _____ probability.

The EXPERIMENTAL (ESTIMATED) PROBABILITY of event A

Example

Janey is the goalkeeper for her soccer team. She keeps records for all the penalty kicks she defends. Last season, 21 penalty goals were scored against her, while she saved 9 attempts.

Estimate the percentage probability that Janey will save the next penalty kick against her.

Example

A bag contains an unknown mixture of colored marbles. One at a time, marbles are drawn randomly, then placed back in the bag. There were 7 blue marbles, 3 red marbles and 2 green marbles drawn.

Estimate the probability that the next marble is red.

Estimate the probability that the next marble is yellow.

Are there yellow marbles in the bag?

There are 48 marbles in the bag. Estimate the number of green marbles.

10.3 Independent and Dependent Events

Consider the probabilities of two (or possibly more) events. The events are called

if the occurrence of one event ______ the probability of the other.

Events that are not independent are called ______ events.

Example

Two dice are rolled. Let A be the event that the first die is even. Let B be the event that the second die is six.

What is P(B)?

Suppose we know that A occurs (the first die is even). What is P(B) now?

Are A and B independent?

Example

One die is rolled. Let C be the event that the die is odd. Let D be the event that the die is five.

What is P(D)?

Suppose we know that C occurs (the die is odd). What is P(D) now?

Are C and D independent?

The PROBABILITY of two INDEPENDENT EVENTS A and B both occuring

is the ______ of their individual probabilities

Example

Consider the two dice from the first example. What is the probability that the first is even at the same time the second is six?

10.4 Sampling Techniques

When using data, a	_ is a collection of _	the people of	or things in	which we're
interested. In practice, it may be	too to	collect data from	n the entire	population.
Instead, we only collect data from a	, which	is a subset of the	e population	l .

Example

Identify the population and sample in each of the following.

- 1. A frozen foods factory chooses 10 pizzas to heat and test.
- 2. A pollster phones 500 voters to ask who they intend to vote for in the next election for Oklahoma governor.

A good sample s	should be of	the population, which mea	ans the data produces
similar results.	This means sample should be as	as is practical.	This also means is
should be a	, meaning the	e members of the sample	are chosen from the
population	A sample which is no	ot	of the population is
called a	, or a	·	

Example

To determine the fitness of students at a middle school, 20 students are chosen to each run a mile. Are the following samples random or biased?

- 1. The principal makes an announcement asking for 20 volunteers.
- 2. 20 names are drawn from a hat with the names of every student in the school.
- 3. Each student is assigned a number, and a computer uses a random number generator to choose 20 numbers.
- 4. Mrs. Henley's sixth grade science class, which has 20 students.