Pre-Algebra Notes
 Shaun Carter

Copyright © 2021 Shaun Carter. All rights reserved.
Permission is granted to individual teachers to use this resource in their classes, and to distribute copies to their students for the purpose of instruction. Do not distribute otherwise without permission.

This resource is pre-release and is still a work in progress. All contents are subject to change.

Downloads are available from https://primefactorisation.com/.

Version 0.1.
July 11, 2021.

Pre-Algebra Notes

1.1 Integers and Absolute Value

The \qquad are the numbers you can count to, starting from \qquad .

The \qquad are the numbers you can count to, starting from \qquad -

The \qquad are the numbers you can count to, but you're also allowed to count \qquad .

This means the integers include the natural numbers and their \qquad , as well as zero.

A \qquad number is any number \qquad than zero. A \qquad number is any number \qquad than zero. A \qquad in front of a number means that it has the
\qquad on a number line.

The \qquad of a number is the \qquad of a number from zero on a number line. The symbol for absolute value is \qquad either side of a number.

Example

Evaluate each of the absolute value expressions.
$|7|$
$|-7|$
$|-4|$
|9|

We can use the symbols \qquad (less than), \qquad (greater than), and \qquad (equals) to show the order of numbers. On a number line, lesser numbers are to the \qquad , and greater numbers are to the \qquad -

Example

Write $=,<$ or $>$ to correctly indicate the order of each pair of integers.
$9 \quad 2$
$-4 \quad 1$
$3 \quad-8$
$5 \quad|-5|$
$-7 \quad-2$
|8| 8

1.2 Integer Operations

The \qquad of a set of numbers is the result of their \qquad .

The \qquad is \qquad , because its sum with any other number is the other number. A positive number and its negative are each the \qquad (or opposite) of the other because they sum to \qquad .

Example

Use the number line to evaluate the sum.

$$
-4+9
$$

Use tiles to evaluate the sum.

$$
8+(-11)
$$

The \qquad of two numbers is the result of their \qquad , which is the inverse
of \qquad . This means we can subtract a number by adding its \qquad .

Example

Use tiles to evaluate the difference.

$$
5-7
$$

Use the number line to evaluate the difference.

$$
-3-(-12)
$$

Write each difference as a sum. Then evaluate them.

$$
6-(-9) \quad-8-(-4) \quad-5-(-11)
$$

The \qquad of a set of numbers is the result of their \qquad , which represents repeated \qquad . For two factors, one factor \qquad how many times the other factor is \qquad .

Example

Use the number line to evaluate each product.

$$
\begin{aligned}
& (-2) \cdot 7 \\
& (-3) \cdot(-4)
\end{aligned}
$$

The \qquad of two numbers is the result of their \qquad , which is the \qquad of
multiplying. It asks what to multiply the \qquad (second number) by to get the \qquad (first number).

Example

Use the number line to evaluate each quotient.

Notice that multiplying or dividing by a negative \qquad the sign (or direction) of the result. Therefore, the product or quotient of two \qquad numbers is \qquad .

Example

Evaluate each product and quotient.
$5 \cdot 7$
$(-6) \cdot 9$
$8 \cdot(-4)$
$(-11) \cdot(-12)$
$\frac{56}{8}$
$\frac{-91}{7}$
$\frac{64}{-4}$
$\frac{-42}{-14}$

1.3 Rational Numbers

A \qquad is a number written as the ratio (quotient, division) of two numbers. It contains
a \qquad on the top and a \qquad on the bottom.

A \qquad is a number which can be written as a fraction using \qquad .

Example

Write each as a fraction to show that it is a rational number.
-19
2.8
$0 . \overline{3}$

In general:

- All \qquad are rational.
- All \qquad are rational.
- All \qquad are rational.

Fractions are \qquad if they represent the same number.

Example

Use the fraction bars to show that $\frac{2}{3}$ and $\frac{8}{12}$ are equivalent.
$\frac{2}{3}$

$\frac{8}{12}$

A fraction can be \qquad by dividing both the numerator and denominator by their
\qquad .

Example

Simplify each of the following fractions.

$$
\begin{array}{ll}
\frac{10}{35} & \frac{20}{32}
\end{array}
$$

Fractions with different denominators are difficult to \qquad and \qquad , so its useful to write them with a \qquad . The \qquad , which is the \qquad of the denominators, is preferred.

Example

Which is greater of $\frac{2}{5}$ and $\frac{3}{7}$?

Write $\frac{3}{4}, \frac{5}{6}$ and $\frac{2}{3}$ in ascending (least to greatest) order.

A \qquad has a numerator \qquad than the denominator, and is valued between zero and one. A fraction greater than one can be written as a \qquad , as the sum of an integer and a proper fraction; or as an \qquad , with a numerator
\qquad than the denominator.

Example

Write the mixed number $2 \frac{3}{4}$ as an improper fraction.

Write the improper fraction $\frac{25}{7}$ as an mixed number.

1.4 Adding and Subtracting Fractions

Fractions can be added or subtracted as long as they have a \qquad , by adding or subtracting the \qquad and keeping the same \qquad .

Example

Evaluate each of the following.
$\frac{5}{7}+\frac{4}{7}$
$\frac{1}{4}-\frac{3}{4}$
$\frac{1}{10}-\frac{7}{10}+\frac{9}{10}$

Example

Use the fraction bars to represent $\frac{3}{4}$ and $\frac{1}{6}$. Then find the sum of the fractions.

$=$

Example
Evaluate each of the following.
$\frac{9}{10}-\frac{18}{25}$
$\frac{2}{3}+\frac{4}{5}$
$2 \frac{5}{8}-4 \frac{1}{4}$

1.5 Multiplying and Dividing Fractions

Example

Shade the region with dimensions $\frac{3}{5} \times \frac{4}{7}$.
How many equally sized sections make the 1 unit square?

How many equally sized sections are in the shaded region?

What fraction of the 1 unit square is shaded?

To multiply fractions, multiply the \qquad to get the resulting \qquad , and multiply the \qquad to get the resulting \qquad .

If multiplying an \qquad by a fraction, write it as a fraction with \qquad for the denominator.

If multiplying a \qquad , write it as an \qquad first.

Example

Evaluate each product.

$$
\frac{4}{9} \cdot \frac{3}{8} \quad\left(2 \frac{4}{5} \times \frac{1}{7} \quad\left(-\frac{3}{10}\right)\left(\frac{20}{9}\right)\right.
$$

The \qquad is \qquad because its product with any other number is the other number. The \qquad (or multiplicative inverse) of a number is another number which multiplies it to result in \qquad .

Example

Show that these numbers are reciprocals.
$\frac{5}{6}$ and $\frac{6}{5}$
$\frac{1}{7}$ and 7
$1 \frac{1}{2}$ and $\frac{2}{3}$

The \qquad of a proper or improper fraction can be found by \qquad the numerator and denominator.

Example

Shade the regions showing $\frac{3}{4}$ and $\frac{2}{9}$. How many small sections make $\frac{3}{4}$?

How many small sections make $\frac{2}{9}$?

How many times does $\frac{2}{9}$ fit into $\frac{3}{4}$?

Example

Evaluate each quotient.
$\frac{5}{4} \div \frac{7}{8}$
$\frac{3}{4} \div 6$
$\frac{2}{3} \div\left(-\frac{6}{11}\right)$
$2 \frac{1}{3} \div 3 \frac{2}{5}$
$9 \div \frac{3}{4}$
$-2 \frac{1}{5} \div(-3)$

1.6 Rational Number Equivalents

Decimals and Percents

"Percent" literally means to \qquad , so 100% is equal to \qquad .

- Convert percent to decimal: \qquad .
- Convert decimal to percent: \qquad .

Example
Convert the percentages to decimal numbers.
40%
83.1\%
275%

Convert the decimal numbers to percentages.
0.7
0.042
4.2

Fractions to Decimals

All \qquad can be written as an \qquad a \qquad
or a \qquad . We can do this by treating a \qquad as \qquad .

Example

Write each fraction in decimal form without using a calculator.
$\frac{3}{5} \quad \frac{11}{25} \quad 4 \frac{3}{4}$

Write each fraction in decimal form using a calculator.
$\frac{97}{80}$
$\frac{8}{11}$
$\frac{49}{15}$

Decimals to Fractions

Each \qquad after the decimal point represents \qquad by a larger power of ten.
$0.1=$
$0.01=$
$0.001=$
$0.0001=$

Any \qquad decimal can be written as a \qquad . The number of
\qquad after the decimal point tells us how many \qquad the denominator should have.

Example

Write each as a fraction.
0.65
3.4
0.425
1.012

For \qquad we can use the property that $0 . \overline{9}=0.99999 \ldots=$ \qquad .
$0 . \overline{1}=$
$0 . \overline{1}=$
$0 . \overline{1}=$

Example

Write each as a fraction.
$0 . \overline{6}$
$0 . \overline{45}$
$0 . \overline{259}$
$0.7 \overline{3}$
$0.11 \overline{8}$
$0.1 \overline{28}$

2.1 Positive and Negative Exponents

An expression in the form \qquad can be used to represent repeated \qquad . The
\qquad , a, is the value to be multiplied, and the \qquad , m, is the number of a 's being multiplied. We can read the expression as " a to the \qquad of m ".

Here are some of the powers when the base is 3 :

Example

Write the expressions in expanded form, and then evaluate them.
3^{4}
4^{3} 11^{2}

Write the expressions in expanded form.
x^{6}
y^{5}
a^{4}

Write the expressions in exponent form.

$$
7 \cdot 7 \cdot 7 \quad 12 \cdot 12 \cdot 12 \cdot 12 \cdot 12 \quad x \cdot x
$$

If the exponent is \qquad we need to repeat the \qquad of multiplication, which is
\qquad . If the base is an integer, this usually results in a \qquad .

Example

Write the expressions in expanded form, and then evaluate them.
3^{-2}
2^{-5}
10^{-3}

Write the expressions in expanded form.
x^{-4}
y^{-2}
b^{-7}

Write the expressions in exponent form.
$\frac{1}{6 \cdot 6 \cdot 6} \quad \frac{1}{9 \cdot 9 \cdot 9 \cdot 9} \quad \frac{1}{y \cdot y \cdot y \cdot y \cdot y \cdot y}$

2.2 Exponent Rules with the Same Base

Example

Write these expressions in expanded form, then simplify as single exponents.
$3^{5} \cdot 3^{2}$
$\frac{5^{9}}{5^{3}}$

Rule 1: The Exponent Product Rule

Multiplying expressions with the same base is equivalent to \qquad .

Rule 2: The Exponent Quotient Rule

Dividing expressions with the same base is equivalent to

Example

Simplify each using the Exponent Product Rule.
$2^{8} \cdot 2^{3}$
$7^{6} \cdot 7^{13}$
$x^{5} \cdot x^{9}$

Simplify each using the Exponent Quotient Rule.
$\frac{6^{14}}{6^{5}}$
$\frac{4^{3}}{4^{8}}$
$\frac{t^{10}}{t^{7}}$

Example

Write these expressions in expanded form, then simplify using single positive exponents.
$\left(2^{3}\right)^{4}$
a^{-5}

Rule 3: The Exponent Power Rule

Raising a base to a power then another is equivalent
\qquad .

Rule 4: The Negative Exponent Rule

Changing the sign of an exponent is equivalent to taking the \qquad of the expression.

Example

Simplify each using the Exponent Power Rule.
$\left(3^{4}\right)^{2}$
$\left(10^{5}\right)^{3}$
$\left(b^{7}\right)^{6}$

Write using a positive exponent.
5^{-7}

Write without using a fraction.
$\frac{1}{e^{11}}$

Special Exponent Values

Any exponential expression with zero for the exponent (and the base is not zero) \qquad .

Any exponential expression with one for the exponent

Example

Simplify each expression with a positive exponent. State which rule is used in each step.
$\frac{t^{8}}{t^{11}} \cdot t^{5}$

$$
s^{5}\left(s^{4}\right)^{7}
$$

$\frac{\left(a^{2}\right)^{3}}{a^{13}}$

$$
\frac{b^{22}}{\left(b^{2} \cdot b^{4}\right)^{3}}
$$

Example

Simplify each expression.
$a^{3} b^{5} \cdot a^{7} b$

$$
\frac{x^{5} y^{2}}{x^{4} y^{8}}
$$

$$
\frac{s^{4} t^{5} \cdot s^{2}}{t^{2}}
$$

2.3 Exponent Rules with the Same Exponent

Example

Write these expressions in expanded form, then simplify each using a single base.
$2^{4} \cdot 3^{4}$
$\frac{12^{5}}{4^{5}}$

Rule 5: The Base Product Rule

Multiplying expressions with the same exponent is equivalent to \qquad .

Rule 6: The Base Quotient Rule

Dividing expressions with the same exponent is equivalent to \qquad .

Example

Simplify each of the following. Write your answer as a single exponent.
$3^{7} \cdot 5^{7}$
$2^{4} \cdot 9^{4}$
$\frac{63^{5}}{9^{5}}$

Simplify and evaluate each of the following.
$\frac{\left(2^{5} \cdot 3\right)^{3}}{2^{11} \cdot 3^{2}} \quad \frac{10^{2} \cdot 10^{4} \cdot 5}{5^{7}}$

Simplify each of the following. Don't use fractions for your final expressions.
$\frac{(a b)^{2}}{b^{5}}$
$\frac{(3 x)^{4}}{x^{5}}$

2.4 Scientific Notation

The \qquad number system is base \qquad , which means each \qquad corresponds to a different power of ten.

- If n is \qquad , then 10^{n} is 1 shifted n place values to the \qquad .
- If n is \qquad , then 10^{n} is 1 shifted $|n|$ place values to the \qquad .

Example

Write in decimal notation:
10^{5}
10^{-4}
10^{3}

Write as an exponent of 10 :
0.000001
10000000
0.01
\qquad is a way of writing numbers which uses \qquad multiplied
by a \qquad . The leading digits always have a \qquad
before the decimal point, with the power of ten used to shift the \qquad .

Scientific notation with \qquad powers can represent \qquad numbers, and scientific notation with \qquad powers can represent \qquad numbers.

Example

Write in ordinary decimal notation:
7.482×10^{5}
5.213×10^{-4}
3.9742×10^{3}

Write in scientific notation:
0.00000358

34910000
0.0882

These are not in valid scientific notation. Correct them.
12.3×10^{8} 0.0234×10^{5}

The exponent on the ten is sometimes called the \qquad . To compare two numbers in scientific notation, compare the \qquad first. If these are the same, the numbers have similar size, so we compare their \qquad .

Example

Which is larger of 7.452×10^{-6} and 3.529×10^{-2} ?

Compare the sizes of a bacterium with a diameter of $1.5 \times 10^{-6} \mathrm{~m}$, a virus with a diameter of $4.5 \times 10^{-8} \mathrm{~m}$, and a red blood cell with a diameter of $8.2 \times 10^{-6} \mathrm{~m}$.

2.5 Operations in Scientific Notation

To \qquad and \qquad numbers in scientific notation, the \qquad can be
treated as ordinary numbers, and the \qquad can be simplified using exponent rules.

Always check that the answer is in correct \qquad -

Example

Evaluate each of the following.

$$
\begin{array}{ll}
\left(3.5 \times 10^{8}\right)\left(5 \times 10^{-3}\right) & \frac{1.8 \times 10^{11}}{6 \times 10^{7}} \\
\left(5 \times 10^{-4}\right)\left(9 \times 10^{-9}\right) & \frac{5.6 \times 10^{5}}{8 \times 10^{18}}
\end{array}
$$

Example

The earth is $1.496 \times 10^{11} \mathrm{~m}$ from the sun. Light travels at $3.0 \times 10^{8} \mathrm{~m}$ each second. How many seconds does it take light from the sun to reach the earth? Use a calculator.

2.6 Square Roots

If we want to make a square whose sides are
\qquad units long, we'll need \qquad unit squares. This is why multiplying a number by
\qquad , or applying an exponent of \qquad is called \qquad .

Example

How many unit squares form a square with sides six units long?

| 6 units | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |\uparrow

Example

What is the side length of a square made from 36 unit squares?
\qquad symbol $\sqrt{ }$. The number underneath a radical is called the \qquad .
\qquad is the number whose square is equal to \qquad .
The \qquad (the opposite) operation of squaring is the \qquad , which is represented by the

A number which results from squaring a whole number is called a \qquad :

$1^{2}=$	$5^{2}=$	$9^{2}=$	$13^{2}=$	$17^{2}=$
$2^{2}=$	$6^{2}=$	$10^{2}=$	$14^{2}=$	$18^{2}=$
$3^{2}=$	$7^{2}=$	$11^{2}=$	$15^{2}=$	$19^{2}=$
$4^{2}=$	$8^{2}=$	$12^{2}=$	$16^{2}=$	$20^{2}=$

The \qquad of a perfect square is a \qquad . The square root of any other whole number is \qquad whole numbers. These square roots can only be when using finite decimal places.

Example

Evaluate $\sqrt{289}$, and give a reason for your answer.

Example

Approximately locate $\sqrt{52}$ on a number line. Explain why the estimate has this location.

Approximate the value of $\sqrt{25}$ with a calculator.

2.7 Understanding Irrational Numbers

A \qquad is a collection of mathematical items, which is often a collection of \qquad .

- The \qquad are the numbers used for counting, including \qquad .
- The \qquad are the whole numbers along with their \qquad counterparts.
- The \qquad are the numbers which can be written as a \qquad (or "ratio") with two integers.

Two new number sets to consider:

- The \qquad are the numbers which can be placed on the \qquad .
- The \qquad are the \qquad numbers which are not \qquad .

Rational and Irrational Numbers

We've already seen that \qquad , \qquad decimals and \qquad decimals can all be written as fractions using integers, so they are \qquad . In fact, \qquad is one of these three.

Therefore, any other number must be an \qquad .

A decimal which and is \qquad

The of a whole number which is not a perfect square is $\pi=3.14159 \ldots$ is \qquad

Combining Rational and Irrational Numbers

The sum or product of two rational numbers is .

Why this is true:

If two numbers are \qquad , that means they can be represented by \qquad . Adding two fractions makes a \qquad , and multiplying two fractions makes a \qquad , so the
\qquad or \qquad is \qquad .

Another way of describing this is to say that the rational numbers are \qquad under addition and multiplication. Just like you can't leave a room if it is \qquad , we can't leave the closed
\qquad by adding or multiplying.

The sum or product of two irrational numbers is \qquad irrational, but not \qquad .

Example

Think of a pair of irrational numbers whose sum is rational.

Think of a pair of irrational numbers whose product is rational.

This means the irrational numbers are \qquad under addition or multiplication.

The sum of a rational and irrational number is \qquad .

The product of a (non-zero) rational number and an irrational number is \qquad -

Example

Answer true or false. Give a reason for each answer.
The product of a rational number and an irrational number is never irrational.
$3+\pi$ is a rational number.
$\frac{2}{3} \cdot \sqrt{25}$ is irrational, because it is a product of a non-zero rational number and a square root.

3.1 The Order of Operations

A \qquad is a combination of \qquad and \qquad which represents a numerical \qquad To \qquad an expression means to determine that overall value. When evaluating expressions, we follow the \qquad .
\qquad including: (in parentheses), [in brackets], $\{$ in braces $\}$,
|in absolute value bars|, $\sqrt{\text { under a radical, }}$, and numerator of a fraction denominator of a fraction.
\qquad , which includes evaluating ${ }^{\text {powers }}$ and $\sqrt{\text { evaluating radicals. }}$
\qquad and \qquad , in order from left-to-right.
and \qquad in order from left-to-right.

To show your working clearly, you should write your calculations \qquad .

We use the \qquad symbol to indicate that expressions as equivalent. You should always work
\qquad , with all the equals signs written in a \qquad .

Example

Evaluate each expression.
$3(8-3)^{2}-5 \cdot 7$

$$
\frac{4-3(-6)}{5(-3)+17}
$$

Evaluating Exponents

Example

Write each expression in expanded form, and then evaluate.
$(-2)^{3}$
$(-2)^{4}$
-2^{3}
-2^{4}

- A negative base to an \qquad is always \qquad .
- A negative base to an \qquad is always \qquad .
- A negative sign not contained in \qquad with the base is not part of the base, and will be evaluated \qquad the exponent.

Example

Evaluate each of the expressions.

$$
(-3)^{4}+(-4)^{3} \quad(-3)^{2}+(-3)^{3}-3^{4}
$$

Expressions Represented with Words

related to +	related to -	related to \times	related to \div
plus	minus	times	divide
sum	difference	product	quotient
addition	subtraction	multiplication	division
more than	less than	twice, double, triple	half of, third of
increased by	decreased by	of	split evenly

Example

Write each description as a numerical expression, then evaluate.
The quotient of 20 and 4.
25 less than 8 .

Twice the difference of 13 and 9.
10 more than the product of 9 and 7.

Half of the sum of 14 and 8.
The sum of 14 and half of 8

7 subtracted from the square root of 16 . The square of the quantity 18 minus 7 .

3.2 Variables and Substitution

A \qquad is a quantity whose value we \qquad or whose value can
\qquad . A variable is usually represented by a \qquad .

An \qquad is an expression which contains \qquad as well as numbers and operations.

If we know the values of the variables, we can \qquad the variables by replacing them with their values. This turns an \qquad into a numerical expression, which can be \qquad . Always surround values with \qquad when substituting.

Example

Suppose that $a=5, b=-7$, and $c=2$. Evaluate each expression using these values.
$2 a+3 b$

$$
\sqrt{b^{2}-4 a c}
$$

Example

Write each as an algebraic expression, where value of "a number" is represented by n.
Triple the sum of a number and 5.10 less than the square of a number.

Evaluate each expression where the value of "a number" is 2 .

Evaluate each expression where the value of "a number" is -8 .

Example

Penelope's Perfect Pizza sells large pizzas for $\$ 6$ each, and also charges $\$ 8$ for delivery.
Choose a variable to represent the number of pizzas delivered to a customer.

Write an expression representing the total cost to a customer.

Use your expression to find the cost to a customer who orders 4 pizzas.

Parts of an Algebraic Expression

\qquad are the parts of an expression separated by \qquad and \qquad symbols. A term
is often written as a \qquad of a number and variables, sometimes with \qquad .

The \qquad of a term is the \qquad which multiplies the \qquad in the
term. The \qquad of the coefficient is determined by the operation \qquad the term.

A \qquad is a term which doesn't contain any variables.

Example

List the terms of the expression $2 x^{2}+3 x y-7 y^{2}+x-9 y+14$.

What are the coefficients of the terms?
The coefficient of x^{2} is The coefficient of y^{2} is
The coefficient of $x y$ is The coefficient of x is
The coefficient of y is
What is the constant term?

3.3 Combining Like Terms

Two expressions are \qquad if their values are \qquad as each other for any values of their \qquad .

Example

Complete the tables by evaluating the expressions.

x	$7 x$	$2 x$	$7 x+2 x$	$9 x$
-3				
-1				
2				
5				

What do you notice?

What do you wonder?

x	$3 x$	$3 x+8$	$11 x$
-2			
1			
4			
6			

What do you notice?

x	y	$6 x$	$4 y$	$6 x+4 y$	$10 x y$
-2	3				
1	5				
4	-1				
6	7				What do you notice?

\qquad are two or more terms whose combinations of \qquad are \qquad .

Constant terms are also considered to be \qquad with each other.

Expressions with like terms can be \qquad by \qquad into an
\qquad single term by adding the \qquad .

Example

Does $7 x+2 x$ have like terms? Does $3 x+8$ have like terms? Does $6 x+4 y$ have like terms?

Example

If these are like terms, simplify them. If they are not, explain why.
$6 a+10 a$
$4 s-9 t$
$5 y^{2}-12 y^{2}$
$-2 n^{2}+5 n$
$-3+8$

Example

Simplify $4 x+5 x-8 y+6 y+7-3$.

COMMUTATIVE PROPERTY OF ADDITION
Sums with \qquad terms
are \qquad .

COMMUTATIVE PROPERTY OF MULTIPLICATION
Products with factors are \qquad

Example
Simplify each of the following expressions by combining like terms.

$$
5 s+4 t-8 s+6 t \quad 4 x-15 x-9+7 x
$$

$9 c d-2 d c$
$7 a b-6 a+3 b+5 b a$
$3 x^{2} y+2 y x^{2}+9 x y^{2}$
$5 x+7 x^{2}-x+x^{2}$

3.4 The Distributive Property

Example

Complete the table by evaluating the expressions. What do you notice?

x	$x+4$	$3(x+4)$	$3 x$	$3 x+12$
-3				
1				
5				
10				

What do you wonder?

THE DISTRIBUTIVE PROPERTY

Multiplying a sum by a value is
to multiplying each term of the sum by that value before adding.

The process of applying the distributive property is called \qquad . The \qquad helps us to make sure that each term \qquad the parentheses is multiplied by the value
\qquad the parentheses.

Example

Distribute each of the expressions.
$5(x+9)$
$-2(y-7)$
$7(2 n-3)$

$t(t+7)$
$-3 p(q+5)$
$2 u(3 u-5)$

$-4(3 a-5 b-9)$
$2 x(x+3 y-5)$

3.5 Factoring

\qquad is the opposite process of \qquad . One way to do this is to find the
\qquad , or \qquad .

The first factor to find is the \qquad of all the \qquad .

Example

Factor the following expressions.
$7 n-21$
$10 x+16$
$15 m-50$

$6 a-30$
$28 x+70$
$105 t+45$

If all the \qquad share any \qquad in common, these are also factors of the GCF.

Example

Factor the following expressions.
$x^{2}+8 x$
$y^{2}-12 y$
$2 a^{2}-14 a$

$8 s t+4 t$
$12 x^{3}+15 x^{2}$
$4 a^{2} b-7 a b$

3.6 Algebraic Reasoning

Much of what we do in \qquad is based on the following \qquad .

associative property of addition		if we add three numbers, we can do either addition first
associative property of multiplication		if we multiply three numbers, we can do either multiplication first
commutative property of addition		we can change the order of terms in addition
commutative property of multiplication		we can change the order of factors in multiplication
distributive		we can distribute and factor
property		

Most of the time we don't need to think about these properties to work algebraically. Sometimes, however, we need to \qquad our work by \qquad our reasoning, using the properties.

We can also use \qquad as reasons for our calculations.

Example

Justify the following simplification, giving a reason for each step.

$$
\begin{aligned}
3(x-4)+2(5 x+7) & =3(x)+3(-4)+2(5 x)+2(7) \\
& =3(x)+3(-4)+(2 \cdot 5) x+2(7) \\
& =3 x+(-12)+10 x+14 \\
& =3 x+10 x+(-12)+14 \\
& =(3+10) \cdot x+(-12)+14 \\
& =(3+10) \cdot x+(-12+14) \\
& =13 x+2
\end{aligned}
$$

4.1 Solving Equations

An \qquad is a mathematical statement which says that two \qquad are \qquad .

If the equation contains a \qquad , the value of that \qquad which makes the equation (makes the two sides \qquad) is called a \qquad .

Example

Consider the equation $\frac{3 x+6}{5}=-3$.
Show that $x=-7$ is a solution. Show that $x=8$ is not a solution.
\qquad an equation means to \qquad for it.

Solving Method 1: Backtracking

The \qquad method identifies the \qquad applied to the variable, then uses
\qquad to work back to the \qquad .

Example
Solve each equation using the backtracking diagram.

$$
x+11=7
$$

$$
6 y=18
$$

$-5(t-8)=30$

Example (continued)

$\frac{n}{4}+11=5$

$$
\frac{3 x-9}{2}=6
$$

The Properties of Equality

addition property of equality	$a=b$ if and only if $a+c=b+c$
subtraction property of equality	$a=b$ if and only if $a-c=b-c$
multiplication property of equality	$a=b$ if and only if $a \cdot c=b \cdot c \quad($ if $c \neq 0)$
division property of equality	$a=b$ if and only if $\frac{a}{c}=\frac{b}{c} \quad($ if $c \neq 0)$

Solving Method 2: Balancing Each Side

We can imagine an equation as a \qquad whose two sides perfectly \qquad . The scale remains \qquad as long as we always do the \qquad .

Example

Use the balance scales to illustrate each equation as you solve them.
$x+5=12$

$4 x=20$

Example (continued)
$5 x+9=24$

Example

Solve each equation.
$n-17=-3$

$$
\frac{b}{7}=9
$$

$$
-3 t=-39
$$

$2 u-9=15$

$$
\frac{x+15}{4}=3
$$

$$
2(y+5)-7=27
$$

Example

Jessica is a member of a gym that charges $\$ 45$ for membership, and an extra $\$ 6$ for each visit. Jessica has paid $\$ 87$ in total to the gym. How many visits has Jessica made to the gym?

Choose and define the variable.
Solve the equation.

Write the problem as an equation.

4.2 Equations with Simplifying

Example

Use the scale to illustrate $3 x+5+2 x+7=27$, and solve it.

Solve $6 t-9-8 t+21=2$.
Solve $7-8 n+5 n+12 n=65+32$.

Example

Use the scale to illustrate $7 x+2=4 x+8$, and solve it.

Solve $5 a=56-2 a$.
Solve $17-b=35+2 b$.

Example

Use the scale to illustrate $2(3 x+2)=x+9$, and solve it.

Solve $9 k+16-6(k+8)=10 . \quad$ Solve $2(y-5)+3(4 y+7)=-17$.

Solve $3(w+2)=2(w-5)$.
Solve $7(z-9)=-5(z+3)$.

1. If there are any parentheses, \qquad them.
2. If the variable is on both sides, remove the term from one side by \qquad .
3. If the variable is repeated on one side, simplify by \qquad .
4. Finish solving as using \qquad .

Example

Jayden starts jogging at a speed of 2 meters per second. Hailey waits 90 seconds, then starts jogging at a speed of 2.5 meters per second. How long will it take for Hailey to pass Jayden?

Choose and define the variable.
Solve the equation.

Write the problem as an equation.

4.3 Equations with Fractions

Approach 1: Solve while keeping fractions

When solving equations with \qquad , we can still \qquad them and use
\qquad to solve them as we would for equations with integers only.

Example

Solve $\frac{2 a}{3}+\frac{5}{6}=\frac{4}{3}$.
Solve $\frac{2 t+11}{4}+\frac{5 t}{8}=\frac{16}{5}$.

Approach 2: Eliminate denominators first

Example

For each list of fractions, find the lowest common denominator.
$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}$
$\frac{2}{3}, \frac{1}{5}, \frac{7}{10}$
$\frac{5}{4}, \frac{1}{6}, \frac{11}{12}$

Multiply each fraction by the lowest common denominator, and simplify.

What do you notice?
What do you wonder?

The denominator of a fraction can be eliminated by \qquad the fraction by a \qquad of the denominator. The \qquad is a multiple of all the denominators in a set of fractions. This means we can eliminate all denominators in an equation by \qquad by
the \qquad of all the fractions in the equation.

Example

Eliminate the denominators first before solving the equations.
Solve $\frac{2 a}{3}+\frac{5}{6}=\frac{4}{3} . \quad$ Solve $\frac{2 t+11}{4}+\frac{5 t}{8}=\frac{16}{5}$.

Which of the two approaches did you prefer? Why?

4.4 Number of Solutions

A \qquad to an equation is a value for the \qquad which makes the equation \qquad .
Many equations have \qquad , but this is not always the case.

Example

Use the table analyze the equation $3 x+5=3 x+7$.

	LHS	RHS	Solution? x
$3 x+5$	$3 x+7$	LHS $\stackrel{?}{=}$ RHS	
-2			
1			
4			
9			

What do you notice?

What do you wonder?

Use the table analyze the equation $2(x-3)=2 x-6$.

	LHS	RHS	Solution?
x	$2(x-3)$	$2 x-6$	LHS $\stackrel{?}{=}$ RHS
-2			
1			
4			
9			

What do you notice?

What do you wonder?

If the two sides of an equation differ by a \qquad , then \qquad is a solution.

If the two sides of an equation are \qquad , then \qquad is a solution.

NUMBER OF SOLUTIONS		
for linear equations with both sides distributed and simplified		
variable term	constant term	type of solution
same coefficient	different constants	
same coefficient	same constant	
different coefficients	N/A	

Example

Determine the number of solutions each equation has. Justify your answers.
$3(2 x+4)-2 x+8=4(x+5)$
$4 x+3-2(x-1)=5 x+8$
$2(5 x-3)+4 x=7(2 x-1)$

4.5 Linear Inequalities

An \qquad is a statement similar to an \qquad but doesn't use \qquad .

x is less than (not equal to) a		
x is greater than (not equal to) a		\longleftrightarrow

Example

Write each description as an inequality, and plot it on the number line.
x is below 3 .
x is at least -7.

Example

Use the tables analyze the inequalities $2 x-7>9$ and $-3 t+5 \geq-1$. Then plot the solution on the number line.

x	$2 x-7$	$2 x-7 \stackrel{?}{>} 10$
5		
8		
10		
12		

t	$-3 t+5$	$-3 t+5 \stackrel{?}{\geq}-1$
-1		
1		
2		
5		

What do you notice?

What do you wonder?

Solve the inequalities algebraically.

When solving inequalities, apply the same operation to \qquad .

To add or subtract	To multiply or divide a positive	To multiply or divide a negative

Example

Solve each inequality, and use a number line to represent the solution set.

$$
3 y-5>10 . \quad-8 u+12 \leq-4 .
$$

Example

Ben can save $\$ 180$ each week, but he currently owes the bank $\$ 630$. He can afford to go on vacation once he has more than $\$ 4500$ saved in his bank account. When can Ben afford to go on vacation?

Choose and define the variable.
Solve the inequality.

Write the problem as an inequality.

5.1 The Pythagorean Theorem

A \qquad is an angle which measures \qquad .

A \qquad is a triangle with a \qquad .

The \qquad side of a right triangle is called the
\qquad . The other two sides are called the \qquad .

Notice that the \qquad are \qquad to the right angle
(they touch it), while the \qquad is not.

THE PYTHAGOREAN THEOREM

Let a, b and c be the lengths of the sides of a triangle, where c is the longest side.
The triangle is a if and only if

This means that in a right triangle a and b are the lengths of the \qquad , and c is the length of the \qquad . It's always a good idea to \qquad the sides a, b and c when working a right triangle problem.

Example

Determine if the following triangles are right triangles.

5.2 Lengths in Right Triangles

If we know that a triangle is a \qquad , and we know the lengths of \qquad we can find the length of the \qquad using the \qquad -

Don't forget that \qquad is always assigned to the length of the \qquad , and that \qquad and \qquad are assigned to the \qquad . Always check that the \qquad works out to be the \qquad side.

Example
Find the length x in each triangle.

Example

A ship sails 100 miles north from its dock, then turns east and sails 150 miles. How far is the ship from the dock?

5.3 Multi-Step Right Triangle Problems

Example

Find the length x

Example

Find the perimeter of the trapezoid.

Example

Find the length of the diagonal d.

5.4 Distances on the Coordinate Plane

Coordinate Plane Review

The \qquad represents the values of two \qquad with a \qquad . Its
\qquad position is value of \qquad , and its \qquad position is the value \qquad .

An \qquad is written as \qquad . It too represents the values of the \qquad x and y, in that order, and the \qquad of a point on the plane.

The \qquad is the horizontal line where \qquad .

The \qquad is the vertical line where \qquad .

The \qquad is where the axes intersect, at the point \qquad .

The \qquad are the four regions separated by the axes.

Example

a) Write down the coordinates of A, B and C.
b) What variable values does D represent?
c) Plot and label the points $(-4,1),(4,-3)$ and $(-3,-5)$.
d) Plot and label the point representing $x=2$ and $y=6$.

Calculating Distances

Example

Consider the distances between A, B, C and D above. What are the two simplest distances to find?

Why are these distances simpler to find than the others?

The \qquad between two points is the same as the
\qquad of a line segment between them. We can form a
\qquad with the distance as the \qquad and horizontal and vertical line segments as \qquad .

The lengths of these \qquad represent the \qquad in x and y between the two points. The Greek letter \qquad ,Δ can be used to mean the \qquad a variable.

THE PYTHAGOREAN THEOREM for the distance between points d

Example

Find the distance between $(2,3)$ and $(5,-4)$.

Find the distance between $(1,-4)$ and $(7,-2)$.

6.1 Function Rules and Tables

A \qquad is a collection of ordered pairs which represents a relationship between two
\qquad
A \qquad is a relation where the value of the \qquad , usually x, determines the value of the \qquad , usually y. Each \qquad (x value) in a function produces exactly one \qquad (y value).

Two ways to represent functions are \qquad and \qquad .

Example

Write in the output for the following function machines.

Example

For the function with the rule $y=2 x+5$, determine the output for each input.
$x=3$
$x=-6$
$x=7.5$

For the function with the rule $y=x^{2}-9$, determine the output for each input.
$x=1$
$x=-3$
$x=4.5$

Example

Complete the table for the function $y=4 x-11$.

input	x	-3	-2	-1	0	1	2	3	4	5
output	y									

Complete the table for the function $y=-3 x+5$.

input	x	-6	-4	-3	0	1	2	5	7	10
output	y									

Complete the table for the function $y=x^{3}$.

input	x	-4	-3	-2	-1	0	1	2	3
output	y								

6.2 Finding Linear Rules from Tables

A \qquad is a function whose output results from \qquad the input by a constant and
\qquad another constant. All \qquad can be written in the same \qquad .

LINEAR FUNCTION GENERAL FORM

where m and b are constant.

Example

Find the constants m and b for these linear functions.
$y=-3 x+7$
$y=\frac{x}{4}-9$
$y=9 x$
$y=13-7 x$
$y=-4(x-5)$
$y=\frac{3 x+4}{6}$

The \qquad between two points of a function is the \qquad of the \qquad in the \qquad and the \qquad in the \qquad .

Example

Complete the table for each function. Then find the rate of change between each pair of points.

input output		$y=4 x-2$	input output		$y=-\frac{2}{3} x+5$
x	y		x	y	
0			-3		
1			0		
2			3		
3			6		
4			9		

What do you notice? What do you wonder?

THE RATE OF CHANGE OF A LINEAR FUNCTION

Linear functions are functions with a

 ,which is the \qquad in the general form.

Example

Find a rule for the linear function described in each table.

input output	
x	y
0	7
1	12
2	17
3	22

input output	
x	y
-4	5
-1	-1
1	-5
5	-13

input output	
x y 0 8 8 14 12 17 24 26	

To find a rule from linear table:
Step 1. Use the table to calculate the \qquad . This is \qquad .

Step 2. Using m and the values for x and y from one point, \qquad for \qquad .

Step 3. Use m and b to \qquad .

Step 4. Check that the rule is \qquad for the values in the table.

6.3 Plotting Function Graphs

An \qquad , written as \qquad has two equivalent meanings:

- The values of the two \qquad , x and y, in that order.
- The \qquad of a point on the coordinate plane.

A \qquad describes a relationship between values of x and values of y. This means we can represent a \qquad by plotting a \qquad on the coordinate plane.

Example

Complete the table for the function $y=2 x+4$.

x	-3	-2	-1	0	1	2	3
y							

Write the entries from the table as a list of ordered pairs.

Plot a graph of the function on the coordinate plane.

Example

Complete the table for the function $y=\frac{x}{4}+1$.

x	-4	-2	0	2	4	6
y						

Plot a graph of the function on the coordinate plane.

A function of the form $y=m x+b$ is called a

because its graph is a

Example

Complete the tables and find the rules for the functions shown in the graphs.

6.4 Identifying Linear and Nonlinear Functions

A \qquad is a function which is not a \qquad .

	LINEAR FUNCTIONS vs. NONLINEAR FUNCTIONS	
	linear functions	nonlinear functions
rule	be whten as	cant be whtien as
table	constant rate of change	
plot	changng rate of change	

Example

Does the rule $y=-\frac{3}{2}(x+4)+11$ represent a linear function?

Complete the table for the function above. Does this show a linear function?

x	y
-4	
0	
2	
8	

Plot the function above on the coordinate plane. Does this show a linear function?

Example

Does the rule $y=x^{2}$ represent a linear function?

Complete the table for the function above. Does this show a linear function?

x	y
-3	
-2	
-1	
0	
1	
2	
3	

Plot the function above on the coordinate plane. Does this show a linear function?

7.1 Intercepts

In a graph, an \qquad is a point where a function \qquad an \qquad .

An intercept on the x-axis is an \qquad , and on the y-axis is a \qquad .

Example

State the intercepts of the graph.

Complete the table and plot for $y=-\frac{2 x}{5}+4$.

x	-5	0	5	10	15
y					

State the intercepts of the graph.

What do you notice? What do you wonder?
x-intercepts occur when .
y-intercepts occur when .

Example

Find the intercepts of the graph of $y=\frac{2}{3} x+8$.

7.2 Slope

The \qquad of a line is a measure of its \qquad and \qquad . Slope is calculated
as the \qquad of the \qquad to the \qquad between two
\qquad on the line.

The SLOPE of the graph of a LINEAR FUNCTION is identical to the function's \qquad .

Example

Calculate the slope of the line.

Example

Describe the direction of a line with slope $m=\frac{5}{2}$.

Describe the direction of a line with slope $m=-\frac{2}{3}$.

Draw an example of each slope on the grid provided.

Example

Plot the line which passes through the point $(5,6)$ with slope 2.

What are the intercepts of this line?

The point $(9, k)$ is also on the line. What is k ?

Example

What is the slope of the graph of $y=-\frac{1}{3} x+2$?

What is the y-intercept? Plot it on the coordinate plane.

Plot a graph of the function by drawing a line from the y-intercept with the correct slope.

7.3 Slope-Intercept Form

We have already learned that:

- The \qquad of a graph is the same as the \qquad of the function.
- The \qquad is the point where the function's input is \qquad .
- The \qquad is the point where the function's output is \qquad .

$$
\begin{aligned}
& \text { SLOPE-INTERCEPT FORM } \\
& \text { is the general form of a linear function } \\
& \text { because } m \text { is the } \\
& \text { and }(0, b) \text { is the of the graph } \\
& \text { of the graph. }
\end{aligned}
$$

A \qquad is a type of graph which only shows the most important information of a function, such as \qquad . A \qquad must be \qquad using a \qquad for straight lines.

Example

Find the intercepts and the slope, then sketch the graph, of the function $y=-4 x+8$.
x-intercep
Solve $m x+b=0$:
y-intercept:

Slope:

Find the intercepts and the slope, then sketch the graph, of the function $y=2 x-6$.
x-intercept: \quad Solve $m x+b=0$:
y-intercept:

Slope:

Example

Find the rule for the function in the sketch.

Find the rule for the function in the sketch, and find the location of the unlabeled x-intercept.

Example

Melanie has a savings account she is using to save up to buy a computer for $\$ 850$. Her savings balance since the start of the year is shown in the graph.

What does the s-intercept represent?

What is the slope of the graph? What does this represent?

What does the independent variable represent?

What does the dependent variable represent?

What does the marked point represent?

Find the rule for the function representing Melanie's savings.

When will Melanie's savings be enough for the computer?

7.4 Finding Linear Rules from Points

To write down a rule in \qquad form, we need to know the \qquad and the
\qquad . Sometimes, we need to use other \qquad to find these.

Example
Find the y-intercept and the rule for each of the described lines.
Slope $m=-3$, passing through $(4,-1) . \quad$ Slope $m=\frac{2}{5}, x$-intercept at $x=-10$.

Example

Find a rule for the line shown.

Find a rule for the line which passes through the points $(-1,5)$ and $(7,9)$.

Point-Slope Form

Suppose a \qquad $\left(x_{1}, y_{1}\right)$ is on a line. We can use (x, y) to represent \qquad on the line. The changes between the points are
Δx
Δy
If the line has \qquad m, then $\Delta y=m \cdot \Delta x$.

The POINT-SLOPE FORM of a line with slope m passing through $\left(x_{1}, y_{1}\right)$ is

Example

a) Write rules for these lines in point-slope form.

Slope $m=-2$, passing through $(-5,7) . \quad$ Slope $m=\frac{3}{4}$, passing through $(8,-2)$.
b) Write each rule in slope-intercept form.

Example

Find the rule for this line in both point-slope and slope-intercept forms.

7.5 Standard Form

The STANDARD FORM of the equation of a line is

- Constants A, B and C are \qquad if possible.
- A is .
- The equation is \qquad , so A, B and C have no common .

Example

Do the points $(6,5)$ and $(-2,4)$ lie on the line $5 x-2 y=20$?

Remember that x-intercepts occur when \qquad , and y-intercepts occur when \qquad .

Example

Sketch a graph and find the slope of $x+2 y=6$.
x-intercept: $\quad y$-intercept: slope:

To find the \qquad for an equation in standard form, we can use the \qquad to calculate it, or we can convert the equation to \qquad .

Example

Check the results of the previous example by writing $x+2 y=6$ in slope-intercept form.

Find the slope of $3 x-4 y=8$ by writing the rule in slope intercept form.

Example

Convert these linear functions to standard form.

$$
y=\frac{2}{3} x-\frac{5}{6} \quad y=\frac{3}{4} x+\frac{5}{2}
$$

8.1 Perimeter and Area Review

The \qquad of a closed figure is the total \qquad of its \qquad . The
\qquad of a closed figure is a measure of the two-dimensional \qquad contained in its
\qquad .

Example

Find the area and the perimeter of the following figure.

8.2 Prism Surface Area

A \qquad is a three-dimensional figure whose faces are two identical
\qquad , connected on each edge by \qquad which are called the lateral faces. If the bases are also \qquad , the shape is a
\qquad . If each rectangle is a square, the shape is a
\qquad .

The \qquad of a 3 D shape is the sum of the
\qquad of its \qquad .

A \qquad is a 2 D representation of a 3 D shape that forms the shape when \qquad along its \qquad . The
\qquad of a 3 D shape is the same as the
\qquad of its \qquad .

Example

Use the net to find the surface area of the rectangular prism.

The SURFACE AREA OF A PRISM whose base has area B and perimeter P, and height is h

Example

Use the net to find the surface area of the rectangular prism.

The SURFACE AREA OF A RECTANGULAR with length l, width w, and height h

Example

Find the surface area of a cube with a side length of 11 inches.

8.3 Prism Volume

The \qquad of a 3D shape is a measure of the amount of three dimensional \qquad
it occupies. The volume of a \qquad is the product of the area of its \qquad , and its
\qquad .

In a rectangular prism, the area of the \qquad is the product of its \qquad and \qquad .

This means that its \qquad can be found by multiplying its \qquad , \qquad , and
\qquad .

The VOLUME OF A PRISM with base area B and height h

The VOLUME OF A RECTANGULAR PRISM with

 length l, width w, and height h
Example

Find the volumes of the prisms shown.

Example

A prism with a square base has a height of 5 mm and a volume of $80 \mathrm{~mm}^{3}$. What is the width of the prism?

Example

A rectangular prism has a width of 4 in and a height of 7 in . The volume of the prism, in inches, is irrational. What can you say about the length of the prism?

8.4 Circles Review

A \qquad is a 2D shape such that all its points are the same \qquad from its center.

A \qquad of a circle is a line segment between the center and a point on the circle. Its length is also called the \qquad .

A \qquad of a circle is a line segment between opposite points on the circle, which passes through the center. Its length, which is double the \qquad , is also called the \qquad .

The \qquad is the curved length around the circle.
π, the Greek letter \qquad , is the ratio of the
\qquad to the \qquad in every
circle. Its value is an \qquad number which can be approximated using \qquad .

The CIRCUMFERENCE C of a circle with radius r and diameter $d=2 r$

The AREA A of the interior of a circle with radius r

Example

Find the circumference and area of a circle whose diameter is 6 in .
Give answers exactly, and to two decimal places.

Example

Find the area of a circle whose circumference is $24 \pi \mathrm{~cm}$.

8.5 Cylinder Surface Area

A \qquad is a 3D shape similar to a prism 1, with for the bases and a single \qquad for the lateral surface.

Example

Find the surface area of the cylinder shown.

Example

A cylindrical tin cup has a diameter of 7 cm and a height of 10 cm . What is the area of the tin which forms the cup?

[^0]
8.6 Cylinder Volume

Recall that the volume of prism with base area B and height h is \qquad . A \qquad is similar enough to a prism that this rule still holds.

The VOLUME of a CYLINDER with base radius r and height h

substituting B, we get the formula for the \qquad of a \qquad .

Example

Find the volume of the cylinder shown.

Example

Find the capacity of the water trough shown.

9.1 Measures of Central Tendency

A \qquad is a single measure which summarizes a characteristic of a collection of \qquad .

A \qquad is a statistic which aims to represent a \qquad
value, or the \qquad , of the data.

MEASURES OF CENTRAL TENDENCY

The of a set of data is the of the data values
divided by the \qquad (the number) of data values.

The \qquad of a set of data is the \qquad when the data are (for an odd count), or the mean of the \qquad (for an even count). The \qquad of a set of data is \qquad value in the data.

Another useful statistic is \qquad , which is a measure of the \qquad of the data, instead of the center. It is the \qquad between the \qquad and \qquad values.

Example

Complete the dot plot and calculate the mean, median, mode and range for the data: $46,44,47,53,45,52,45,47,49,46,45$.

Example

In the first five basketball games of the season, Alex scores $8,13,6,4$ and 7 points. What are his mean and median scores?

In the sixth game, Alex scores 22 points. How does this change his mean and median scores?

Did including 22 in the data have a bigger effect on the mean or the median? Why?

Example

Karissa keeps track of the number of miles she runs each week. Over the last four weeks, she ran $6,4,8$ and 6 miles respectively.

What is the mean distance Karissa ran each week? What is the median distance?

Without knowing how many miles Karissa runs in the fifth week, what could possibly happen to the mean and median?

9.2 Outliers

An \qquad is a value in a data set whose value is \qquad the range of values which could be expected from the rest of the data. This typically means \qquad are much \qquad or \qquad than the rest of the data.

Outliers need to be carefully investigated, as they are sometimes the result of \qquad . If an outlier exists, it's a good idea to find a \qquad its value doesn't fit the rest of the data.

Example

Complete the dot plot, and use it to identify any outliers for the following data:
$22,23,25,22,15,21$
Find the mean and median of the data.

Find the mean and median with any outliers removed.

In general:

- Outliers can have a \qquad effect on the \qquad .
- Outliers usually have a \qquad effect, or even \qquad effect, on the \qquad .

9.3 Scatterplots and Lines of Best Fit

In statistics, a \qquad is a characteristic of a person or thing, which can have different values for each person or thing. The data for each person or thing is called an \qquad .
\qquad consists of observations of \qquad variables.

A \qquad is a plot which uses a coordinate plane to represent \qquad with a \qquad on each \qquad . Each observation is plotted as a \qquad on the plane.

Scatterplots should always include an appropriate \qquad , and \qquad on each axis with appropriate \qquad .

Example

The table shows the diameter (in inches) and the volume (in cubic feet) of a selection of black cherry trees ${ }^{1}$. Represent the data on the coordinate plane as a scatterplot.

A \qquad is a line we draw on a scatterplot so that it is as \qquad as possible
to each of the \qquad on the scatterplot. The line shows the general \qquad of the data.

In statistics, a \qquad is a \qquad which approximates the \qquad between variables. The line of best fit represents a \qquad for our two variables.

For now we'll \qquad the line of best fit. In high school, you'll use software or a calculator to do this more precisely.

Example

1. Draw the line of best fit for the previous scatterplot.
2. Estimate the volume of a black cherry tree with a diameter of 17 inches.
3. Estimate the rate of change of the volume of a black cherry tree with respect to its diameter.
[^1]
10.1 Probabilities and Prediction

An \qquad is a random phenomenon whose \qquad is unknown until it occurs.

The \qquad of an experiment is the set of all of its possible outcomes.

Example

State the sample space for each of the following.

1. The side shown on a flipped coin.
2. The value rolled on a standard 6 -sided die.

An \qquad is a subset of the sample space, or a collection of outcomes.

The \qquad of an event is a number between \qquad and \qquad inclusively which indicates how likely an experiment is to produce the \qquad . Probabilities can be written as \qquad ,
\qquad , or \qquad .

If $P(A)=0$, then event A is \qquad .

If $P(A)=1$, then event A is \qquad .

If $P(A)=0.5$, then event A is \qquad to occur or not occur.

Example

A fair coin is flipped. What is the probability of each of the following events?

- A : The coin lands heads up.
- B: The coin lands tails up.
- C : The coin lands either heads or tails up.
- D : The coin turns into a pony.

PROBABILITY of event A in sample space S with equally likely outcomes

Example

What is the probability that the value rolled on a 10 -sided die is a prime number?

Is the number more likely or less likely to be prime than not prime?

Example

Two dice are rolled. Complete the table showing the sums of the possible dice rolls. Find the probabilities
of the following events:
A : The sum of the two dice is 4 .
B : The sum of the two dice is a multiple of 5 .

Which sum is most likely to be rolled? What is its probability?

First Die Roll

10.2 Experimental Probability

Often it isn't possible to calculate the probabilities of events. Instead, we can \qquad an experiment many times, and use the outcomes to \qquad the probabilities of the events. These estimates are called \qquad .

A

\qquad is an individual performance of an experiment. Increasing the number of trials improves our confidence that the \qquad probability is close to the \qquad probability.

The EXPERIMENTAL (ESTIMATED) PROBABILITY of event A

Example

Janey is the goalkeeper for her soccer team. She keeps records for all the penalty kicks she defends. Last season, 21 penalty goals were scored against her, while she saved 9 attempts. Estimate the percentage probability that Janey will save the next penalty kick against her.

Example

A bag contains an unknown mixture of colored marbles. One at a time, marbles are drawn randomly, then placed back in the bag. There were 7 blue marbles, 3 red marbles and 2 green marbles drawn.

Estimate the probability that the next marble is red.

Estimate the probability that the next marble is yellow.

Are there yellow marbles in the bag?

There are 48 marbles in the bag. Estimate the number of green marbles.

10.3 Independent and Dependent Events

Consider the probabilities of two (or possibly more) events. The events are called \qquad if the occurrence of one event \qquad the probability of the other.

Events that are not independent are called \qquad events.

Example

Two dice are rolled. Let A be the event that the first die is even. Let B be the event that the second die is six.

What is $P(B)$?
Suppose we know that A occurs (the first die is even). What is $P(B)$ now?
Are A and B independent?

Example

One die is rolled. Let C be the event that the die is odd. Let D be the event that the die is five.

What is $P(D)$?
Suppose we know that C occurs (the die is odd). What is $P(D)$ now?
Are C and D independent?

The PROBABILITY of two INDEPENDENT EVENTS A and B both occuring is the ___ of their individual probabilities

Example

Consider the two dice from the first example. What is the probability that the first is even at the same time the second is six?

10.4 Sampling Techniques

When using data, a \qquad is a collection of \qquad the people or things in which we're interested. In practice, it may be too \qquad to collect data from the entire population. Instead, we only collect data from a \qquad , which is a subset of the population.

Example

Identify the population and sample in each of the following.

1. A frozen foods factory chooses 10 pizzas to heat and test.
2. A pollster phones 500 voters to ask who they intend to vote for in the next election for Oklahoma governor.

A good sample should be \qquad of the population, which means the data produces similar results. This means sample should be as \qquad as is practical. This also means is should be a \qquad , meaning the members of the sample are chosen from the population \qquad . A sample which is not \qquad of the population is called a \qquad , or a \qquad .

Example

To determine the fitness of students at a middle school, 20 students are chosen to each run a mile. Are the following samples random or biased?

1. The principal makes an announcement asking for 20 volunteers.
2. 20 names are drawn from a hat with the names of every student in the school.
3. Each student is assigned a number, and a computer uses a random number generator to choose 20 numbers.
4. Mrs. Henley's sixth grade science class, which has 20 students.

[^0]: ${ }^{1}$ Technically, a prism is a type of polyhedron, which means all the faces are flat polygons with straight edges. Because a circle is not a polygon, a cylinder is not a polyhedron, which means it can't be a prism.

[^1]: ${ }^{1}$ This is a subset of a dataset available in R , a programming language used by many statisticians. https://search.r-project.org/R/refmans/datasets/html/trees.html

