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Chapter1 Functions Algebra 2 Notes

1.1 Sets

A 561’ is a collection of mathematical objects. In this class, it will almost always be a collection

of I/\Ule@FS . Sets are usually represented by upp&r CASE  variables.

Sets can be defined as a list of values, or by using a rule, notated by Curl\,/ bra()@S .

Examplel If set A contains only the values 1, 2, 3, 6, 8 and 9, then
A=1{1,2,3,6,8,9}
If set B contains all values greater than or equal to 6, then
B={z:x>6}
Note that either : or | can be used in set notation. If reading aloud, say “ SU(‘JV\ Jﬂﬂﬂf "

z € S says that the value z 1S O 6|@W\6N O’F the set S, or zis I S.
x ¢ S says the opposite: the value z is V\O‘f N the set S.

Example2 Using the definitions of A and B above, write € or ¢.

le A 6c A

4d A

7¢ A

59¢ A

81¢ A

1¢ B

4¢ B

6ecB Te B

59¢ B

s.le b

Symbols for Special Sets

Typed | Written Name Description
fhe em
1) 561' PW The set that contains no elements at all.
N %&ng&gﬂl The set of numbers'used for counting. N = {1,2,3,...}

the integers

The set containing all the natural numbers, their
negative counterparts, and 0.
Z=A...,-2,-1,0,1,2,...}

The set of numbers which can be written as fractions

Q mﬁu&@gggm using integers. Real numbers not in this set (including )
are called m
R the real The set of a” numbers which can be placed on the
numbers number line.

'Many mathematicians would say the natural numbers also include 0. If you want unambiguous terms, you can
use positive integers to exclude 0, and nonnegative integers include 0.

6
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Algebra 2 Notes 11 Sets

Combining Sets

AN B is the Wﬂ'@FS@GﬂOV\ of A and B. It is a set that contains all the elements that are in
both A and B.

AU B isthe UNION  of A and B. Tt is a set that contains all the elements that are in either A
or B.

A\B is the 5@1’ d"F‘F@rﬁﬂGG of A and B. It is a set that contains all the elements that are
in A but not in B.

Example3 C ={1,5,7,10} and D = {4,5,6,7,8}

CnD={5T17} CUD={1,4,5,6,7,8,10}
C\D = {1,10} D\C = {4,6,8}
Interval Notation

An llfff@rva| is a special type of set which contains all real numbers between a |OW6F
bound , a, and an _Upper _bound , ».

[a, b] represents an interval with bounds which are |HO|Ud6d . (a,b) represents an interval with
bounds which are 6XC|Ud@d . (a,b] and [a,b) can be used when the bound types are mixed.

On number lines and graphs, an included bound is represented by a GIOS@d ,VOWW. ®  and
an excluded bound is represented by an OV@H ?O"ﬂt o .

Example 4

Interval Set Notation Real Number Line

[—2,3) {x:—2§x<3} 1 1 . ; | | | O i

-4 -3 -2 -1 0 1 2 3 4

(1, 6] {z]1<z<6}

(—4,0) {l’ ’ —4 <x< O} 1 1 —l |

[—2, OO) {ZIZ T > —2} 1 1 1 1 1 1 1 1 1

"N
+0

(—00,7) {r:2x<T}

(—O0,00) R = {SC ‘ x5 r@al} T

© 2020 Shaun Carter v. 0.3 7
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If a set consists of dISOOVW\GGTGd

in the same set.

Examples:

Algebra 2 Notes

intervals, the union symbol can be used to include them

Interval Notation

Real Number Line

(=3, 1)U [4,7]

(—o0, —1] U (3, 00)

[1,2) U (3,4] U [6,

)

I
T

If a set contains all real numbers GX%PT SOMe values, there are multiple options for notating

the set.

Example5 The set containing all real numbers except 2 and 5 is

Interval Notation

Set Notation Set, Difference

(—00,2) U (2,5) U (5,00)

{z |z # 2,5} R\ {2,5}

Comparing Sets

If every element in a set U is also in another set V', then we can write U C V. We say that U is a

SUbS@T of V, and that V is a SUE@FS@T of U. We can also say that V' OON&W\S U.
Example6 Let A={-1,2,3,4} and B={-1,2,3,4,5.5,7}.

Set Relation T/F Reason
ACB True Every number in A is also in B.
BCA False 7€ B but7¢ A
ACN False —1€ A but —1 is not a natural number.
ACZ True Every number in A s an intedger.
BCZ False 5.5 € B, buf 5.5 Is ot an infeger.
AcC[-1,4) Folse 4€ A but4¢[-1,4).
B C[-1,7] True Every number in B satisfies —1 <z <.
[—1,4) C [-1,7] True | F —1<z<4 then —1 <z <75 aso frue.
NCZcQcR | True Folows from definitions of these sefs.

© 2020 Shaun Carter v. 0.3




Algebra 2 Notes 1.2 Introduction to Functions

1.2 Introduction to Functions

A r6|aJﬂO|/\ is a collection of ordered pairs which represents a relationship between two sets of
real numbers. Each ordered pair is typically labeled as (x,y).

The first set, which contains all z-values, is called the dOVV\OtIV\ . The second set, which contains
the y-values, is called the GOdOW\O&IV\ .

A ‘FUV\O‘hOV\ is a particular type of relation. In a function, each value in the domain is
UI/“QU@M related to a value in the codomain. In other words, for each =z, there is

GXQCH\/ one y related to it.

To say that a function f relates a domain A and a codomain B, we write
f:A—B

which can be read aloud as ‘F W\QPS WOVV\ A TO E .

The relation between = and y is written as ) = f(x)

The mﬂgl{’/ (or image) of a function is the 5Ub961’ of the GOdOVV\aW\ that contains the
values that are actually produced by the function. We can think of the domain as the W\EUTS
of the function, and the range as the OUTEUTQ of the function.

Example1l Find the domain, codomain and range of the function, and find the value of f(x) for
each value x in the domain.

domain of f = {1,2,4,5}

codomain of f = {2,3,6,7}

rnge of f = {2,6,7}

f)=2 f2)=6 f@4)=7 f(5 =6

domain codomain

Example 2 Explain why the following relation is not a function.

GM‘l The value % In the domain maps 1o both 3 and 4
5 3

in the codomain.
! / \ ? As b is not uniquely related, this is not a function.

1

domain codomain

© 2020 Shaun Carter v. 0.3 9
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One-to-One and Many-to-One Functions

For every function, each z-value in the domain maps to a unique y-value in the range. It is not
necessarily true that each y-value is mapped to by a unique x-value.

domain

In a OV\@‘TO—OV\G ‘FUV\OﬂOV\ , each y-value in the

range is only mapped to by one x-value in the domain.

Equivalently, f(a) = f(b) if and only if a = b.

In a VV\aV\\'/—*O—OV\{’J {;UﬂOﬂOIﬂ , at least one y-value

in the range mapped to by more than one z-value in the

domain

Function Evaluation

— [
—
——
1\

domain.

Equivalently, there is an a and b in the domain such that

f(a) = f(b), but a # b.

range

To Gvalum'@ a function means to determine the value of f(a) for a given value a in the domain.
If a is not in the domain, then f(a) is said to be W\d@ﬁlﬂ@d .

Example3 The function f is defined by the table shown.

10

f(z)
4

3

The domain of fis {—3, -2, —1,0,1,2,3}.

The range of fis {—1,0,1,2,3,4,5}.

The relation type of f is one-fo one, because each

output has only one input.

f(2)=5 f(4) is undefined
F(=2)+ f(2) =3+5=8
2f(=3)—5f(0)=2-4-5-1=8-5=3
fOUPQ) =7(=1)=0

FUS=2) =F(F3) =12)=5

© 2020 Shaun Carter
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1.2 Introduction to Functions

Example4 The function g is defined by the graph shown.

- 39(97)

4+ { ]

|
T

1

Example 5

h(z)

The domain of g is {0,1,2,3,4,5}.

The range of g is {1,2,3,4,5}.

The relation type of g is Many-fo-one, becouse
9(2) = g(5) =4

g(1.5) is undefined

The function h is defined by the graph shown.

RS

The domain of A is (0, 6].
The range of h is [1,3) U (3, 6].

The relation type of h is one-fo-one, becouse
each output has only one input.

h(4) = h(1.5) = 4.5
h(0) is undefined h(2.5) = 5.25

>

(g
(R

Q

Example 6 The function j is defined by the graph shown.

© 2020 Shaun Carter

AN

V.

0.3

RS

The domain of j is [1,7).

The range of j is [2,06).

The relation type of j is many-fo-one, becouse
j(1) =3() =3

2 3(7) is undefined
2.25 §(6) = 4.25

11
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1.3 Inverse Functions and Solving Equations

Suppose we have a r6|0d'|OIﬂ which consists of a collection of ordered pairs in the form (x,y).
Its IV\VGFSG r6|0d'|0lﬂ is the relation whose ordered pairs are switched to be (y, z).

Recall that a ’FUV\UhOV\ is a special type of rela@ion. If the IV\\[GFS{’J rﬁlahOﬂ of a
fUNCHION 55 a1so o _TUNCHION | it is called the _INVEIse function .

If a function is denoted |, its inverse function, if it exists, is denoted _ ] -l .

Properties of Inverse Functions

If function f has the inverse function f~!, then domain range
' ' 1 of f of f
e The inverse function of f is f .

e The dOVV\allﬂ of f~1 is identical to the mlﬂglﬁ of f.
e The mﬂgl{’/ of f~1 is identical to the dOVV\alIﬂ of f.
range domain

e As the inverse function results from switching the x and y of f~1 of f~1

values, the glmglﬂé of y = f(x) and y = f~1(x) are
retleCtions | or _MIFOr _IMAGRS  of each other

across the line y =X.

Condition for Inverse Functions

Suppose function f is defined by the following table, and suppose f~! is its inverse function.

1]z
f@) |7]8 |7

What is £71(8)? f1(8) = 2 because f(2) =
What is f=2(7)? f~H(7) =1 or f71(7) =3 because f(1)= f(3)=T.

Because f~1(7) has MUH1E|@ values, f~! is V\O’f a 1OUI/\OJHOV\ . This has happened because
fisa VV\O\V\\,/—TO—OV\G function. Therefore,

A function f has an Inverse function !
if and only if f is a 0Ne~10-0Ne _ function.

12 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 1.3 Inverse Functions and Solving Equations

Example1l The function f is defined by the table shown.

z | f@) The domain of f is {—3, -2, —1,0,1,2}. x| [ ()

3| 4 , - |
The range of fis {—1,0,1,2,3,4}.

2| 3 0 -

The inverse function f~! does  exist
e because the function is _0Ne=10 0Ne .

The domain of f~1is {—1,0,1,2,3,4}.

The range of f~!is {—3,—-2,-1,0,1,2}.

Example2 The function g is defined by the graph shown.

The domain of g is (0, 7.
The range of g is (1, 8].

The inverse function g~ does  exist
because the function is _0Ne—=10 one .

The domain of g~tis (1, 8].

The range of g~tis (0, 7.

Solving Equations using Inverse Functions

Recall that we can use IV\V€X§6 OP@FOﬂ'IOV\S to solve equations. If an equation contains a
OV\G_TO—OV\@ WOUV\()TIOI/\ , We can use its IV\V@F% ’FUV\CJ‘hOV\ in the same way to solve

the equation.

If a solution 6X|§1'9 , this method will ensure that it is UI/“QU’& . If the equation requires

applying the IV\V@VS@ WCUV\OhOV\ to a value for which it is UV\d(’ﬂCIV\@d , then the equation
has _N0_solution

© 2020 Shaun Carter v. 0.3 13
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Example3 Solve the following equations using the table defining f.

v |3|2|a]o]1]2]s3
i@ a3 ofa]a]s]e
2f(x+3)—4=6 e
2f(x+3)=6+4 fGz)—1=2.3
=10 =
flz+3)=1 f(bz) =6+1
=5 =7
r+3=f71(5) 5z = fH(7)
=2 s undefined
r =2 ; 3 .o solution

Solving Equations with no Inverse Function

If an equation contains a W\OW\\/—TO—OI/\@ TCUV\GhOV\ , it may still be possible to solve the
equation. However, the solution may not be UV\IQ]U@ .

Example 4 Solve the following equations using the table defining g.

1 3
g@) | 32| 1[3|2]1]3

7
3g(z —5) +2 =38 g(@; =5
3g(x —5) =8-2 g(x)+7=5-2
= ~10
6
ola—5) = gx) =107
-9 =3

r=-30 =00 =
r—5H5=-—-20 x—5= v 3 =0 r=3

1
r=-2+50 x=1+5
r=30 =06

14 © 2020 Shaun Carter v. 0.3
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14 Transformations

A TraVNSfOFVV\ahOV\ isa FUIG which, when applied to a @6OVV\6+HC ﬂ@urﬁ , produces
an IVV\OKQIG of the figure with each point changed in a prescribed way.

In this class we'll consider transformations of _ 0 |f|5 of functions and how they change the

function _olgebraically .

For the following examples, we’ll use the function f, as defined by this graph and table:

4@

Reflections

A r@ﬂ@d’lOV\ is a transformation which creates a VV\IWOF IMQ@@ across a
|l|/\6 O‘F 5\’/W\W\61T\/ . Each point in the image remains the SoMe dISTaV\OG from
this line, but on the OPPOQH@ 5|d€/ .

Example 1 4——y
g9(x) = f(—x) AN
o 40 %2 17211 10]-1-2|-%2|-4 L] R
—z | - 3 |21 lo| 1] 2|34 4 22 2 1
fea g g - -1 2] 2|12 CT e
g9(z) 4l

Each z-value haé ﬂf\@ O'V'VOSHE Slgm . Each y-value |9 UV\CV]aIﬂ@lﬁd .

The graph has been _6flECTRd 001055 fe y-0XiS .

© 2020 Shaun Carter v. 0.3 15
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Example 2

9(x) = —f(x)
x -4 -3 -2 -1 0 1 2 3 4
fy | 2= ==l 22112
@2 s = =3 -2 -1 -2
9(x)

Algebra 2 Notes
Y
4 .
f(z)
2 4+
s : S
—4 —2 2 4
_o 1
g(x)
44

Each a-value _IS_UNCNONGRD . Bach y-vaive 1105t 0pposite sign .

The graph has been _FefleCted a0ross the x-oxis .

Stretches and Compressions

A 5W6+Ch or OOW\W@SSIOV\ is a transformation where each point’s distance from a
fixed IN€ s mutiplied by o _SCole factor .

If each point gets ‘Furw}@r ‘FrOW\ the fixed line, the transformation is a SWGTCIA . If each
point gets 0|O%r 1’0 the fixed line, the transformation is a (‘JOVV\,VF{ZSSlOV\ .

Example 3

g(x) = f(2z)
x 2= =1 [=00 101061 |Ib
2 4 | 3 |-2] 1 o] 1 |2]3
CN N R AN
g(z)

Fach z-value |5 VWUH’IP“@d b\'/ I/Z . Each y-value |5 umohﬂﬂgﬁd .

The graph has been GOVV\IWC:SS{’Jd TOWOM ‘W]G \/‘QX'S by a factor of L .

16
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Example 4

g9(x) = 3f(x)
x -4 -3 -2 -1 0] 112|334
fa) [ -2 -5 | -1 =11 ]32]2)1I

@ | 45| -31-3213 9|6 |30

g9(z)

Each z-value IS UV\Chaﬂgﬁd .

Fach y-value |5 V\/\um?h@d b\’/ 5 .

The graph has been STY@fchﬁd 1CFOVV\ ﬂﬂ@ X—(AXiS by a

factor of _ ./

Translations

A melﬂsmﬂOIﬂ , Or 5'/“‘?1' , is a transformation where every point in the image is moved
the came distance w_the same direction .

A translation can be |6‘F+ or H@'/TI’ , Or u'V or dOWH , or a combination of directions.

Example 5

g9(x) = flx —=2)+5

o -2 -0 ]2]3]4]5]0 s
Tz — 2 -4 -3 2]1-1(0(1]2 |34 64
f@=2) | =2|-19|-1|-1|1]2]|2]1]Z

Je=2+51 23 |25 1 41 4|, [8] 7|61 ola) ]

g(2) T /\/f(x)
Each z-value IS IV\GF@QS@d IQ\’/ Z .

Each y-value |5 Iﬂcrﬁaéﬁd b\’/ 5 .

The graph has been Shl’H%d Z UV\H'S H@Vﬂ' and
h_units up .

© 2020 Shaun Carter v. 0.3 17
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Combining Transformations

Example 6 g(x) =2f [-(z+3)] +2
x | 0 -1 -2]1-%2]-4]-b|-b]| -7
z+3 4 % /A | -4
—(z+3) -4 -3 -2 -1 4
fl=(z+3)] -2 -5 -] -l 1
2f = (z + 3)] -4 -5 -1 -1 4
2f[—(x+3)] +2 _7 —| 0 0 b
g9(z)
The graph has been:
. r@ﬂ@d’%d across the y"aXiS ,
. STFGTOV\Gd from the X—OleS
by a factor of L , f(z)

. SMI’H'@d I@‘H' by 3 units, and
. Shl’Hrﬁd UIV by Z units.

When listing transformations for the usual form g(z) = A - f [n(x — h)] + k, translations should
always be listed aﬁ'ﬁr reflections and dilations.

Summary of Transformations

reflect across the z-axis if A 5 mgaﬂVG
y=A-f(x) stretch from the z-axis by a factor of |A| if )A) > 1

1
compress toward the z-axis by a factor of — if () < !A ! <1

4]
reflect across the y-axis if _ ) i9 V\@@QﬁV@
1
y=f(n-x) stretch from the y-axis by a factor of ﬂ if 0< |ﬂ| <1
n

compress toward the y-axis by a factor of |n| if _[I1| > 1

translate |h| units right if his POSMV@ left if _/E ative
translate |k| units up if kK is POSiﬁV@ , down if ﬂ@glﬁﬂV@

y=flx—h)+k

18 © 2020 Shaun Carter v. 0.3
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Chapter 2 Linear Functions and Equations Algebra 2 Notes

2.1 Linear Functions

A |IV\60W ‘FUV\ClhOV\ is a function with the algebraic form

f(x) =mz+0b
where m and b are constants.

This corresponds to the 9'0?6'%*@“)@?* 1°OFVV\ of a linear relation, named because the
graph of the function is a ijm@lfﬂ' |lﬂ6 , where m is the 5|OE@ of the line and b is its
v-intercept .

If a function is defined by an quahOV\ rw% , the function is evaluated by SUbSﬂmﬂV\@
the appropriate value from the dOVV\aW\ into the rule, and calculating the result.

Examplel f:[-3,6) — R, where f(z) = —2z + 8.

f(2) =—-2(2) +8 f(8) = —-2(5) +8 f(=3) = —2(=3) +38
—4 =2 = 14
f(7) Is undefined f(=1.25) = —2(—1.25) + 8
7T ¢[-3,6) =25+8
=10.5

Graphing Functions

A useful tool to VISUOHIZG a function is its glmpln .
The graph consists of a OUFVG ! drawn on a
coordinate_plane , o _Cartesion plane =.

If z is in the dOVV\alV\ of the function f, then the
EO|N (z, f(x)) will be part of the curve.

Example 2 Plot the function f from Example 1 on the
coordinate plane to the right.

Even if it’s a straight line, it’s still called a “curve”.
2Named after the 17th Century French philosopher, René Descartes.

20 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 21 Linear Functions

Implied Domains

It is common practice to state only the rule of a function, without stating the domain. In these

cases, it is reasonable to assume the WV\'Vh@d dOVV\OHIﬂ , which is the |ar€|691' P099|b|6
domain for which the function can be 6VQ|U0&1’661 .

For a IW\@Gr WCUV'\O‘hOV\ , the implied domain is a” F@Oﬂ V\UVV\bGFS. R , because
max + b can be evaluated for any = € R.

Sketching Linear Functions

A SI(GTGV] is a version of a graph that shows only the k@\’/ IVhOOFVV\Od'IOV\ . In the case of

a linear function, the information that should be included is:

shape of curve | Sfraight e with an appropriafe slope

z-intercept y =0, find z by SO|VW\@ flx)=0

y-intercept =0, find y by evaiuaﬂm y = f(0)

endpoints evaluate the function at the bounds of the domain

Example3 Sketch f(z) = 4a + 6. Yy
Shape: Straight line with slope m = 4
r-intercept: (—%, O) f(z) =4z +6
dr +6 =0
dr = —6
r= 3
y-intercept: (0,6), 05 f(O) =6
endpoints: NONe, as domain is R

\ [\ (V]

Example 4 Sketch g(z) = —1z + 1 on the domain [2, co).

Shape: Sfraight line with slope m = —1 ) )
z-intercept: (2,0) -
1
—55174—1:0 oo
I
—§ZE =—1 B
xr =2 fx) = —5x+1

y-intercept: NONE, s f(0) Is undefined
endpoints: (2, O)
9(2) =0

Note that it is a good idea to include at least two points so the slope of the line is clear.
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Chapter 2 Linear Functions and Equations

— 3, and sketch the graph of h(zx).

Example5 Find the range of i : (—1,5] — R where h(z) = —2z

8
[ap)
,
, |
I o
)
— <
|
.
= |
o
™
—
_
—
. | o
I [
_1_ S
Il ™
S L N
o I s 117
O O Ve
h SN——"
x Ia)2
= wos =
= W0 S _
S ))(\__
& )12
£ 9 Q0 e
£ B el =
S Som | =
= = |
s . L=
963%%@&1..
C_ O g
g 3 | 3 8 Iw
Qe K = o
ERRCIEN g < Il |
n o8 | L8 = os

~13,—1)

[

The range of h i

The Linear Parent Function

For any given function, its WF@V\T WCUV'\O‘hOV\ is the simplest function of the same type.

parent function

domain

range

relation type

one-to-one

z-intercept

(0,0)

y-intercept

(0,0)

slope

v. 0.3
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Transformations of Linear Functions

Recall that g(x) = Af(z) + k represents a 5#61’0'/] or C;OVWVFGSSIOV\ from the z-axis if
A # 1, a r@‘H@ChOV\ across the z-axis if A is negative, and a meV\5|aﬁOV\ up or down.

If welet A =m, k=0, and f(x) = z, then g(z) = max + b, the general form of linear functions.
This gives us the following result:

Every linear ‘FUWCﬁOﬂ , 9(x) = mx + b, is the result of a erlf\chorVV\aﬁOV\
applied to its WF@N function , flx) = .

Example 6 Write the transformations needed to obtain
g(x) = —2x 4 5 from its parent function.

« Reflect across the x-axis,
« Sirefeh from fhe x-oxis by a factor of 2.
« Shift b units up.

~10

Example7 The graph of y = z is compressed by a factor of 4 toward the z-axis, shifted 8 units

left and shifted 7 units down. What is resulting function in slope-intercept form?

A:i, h=-8  k=-7
flx)=3(x+8)—7
:%x+2—7
—%37—5

© 2020 Shaun Carter v. 0.3 23



Chapter 2 Linear Functions and Equations Algebra 2 Notes

Transformations do not need to be applied only to the parent function, but can be used with any
function.

Example 8 The function f :[-2,5) — R, where f(x) = 2z + 4, is reflected across the z-axis and
shifted 3 units right. Find the resulting function g in the form g(z) = maz + b.

Find the new domain: Find the new rule:

Reflecting across the x-axis does not g(z) = = f(z = 3)
affect the x values. = —[2(z—3)+4]
Shifting 2 units right means each x = —(22 - 6+4)
value i increased by 3. = —(2z-2)

S0, g:[1,8) = R = —21+2

Example 9 Find the transformations required to transform f(z) = 3z + 2 to g(x) = —6x + 5.
A=—2 k=09

g(x) = —6x+5
— —2(32) + 5 « Reflect across the x-axis.
= —2(3z+2-2)+5 o Sretth from e x-axis by a
— 2(3r+2) +4+5 facfor of 2.
= —2f(x)+9 o Shift 1 units up.
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2.2 Inverses of Linear Functions

Recall that a functiop has an IV\VGYSG ‘FUV\(\J‘“OV\ if and only if it is a
one-to-one_function .

Since non-constant |||ﬂ6&r functions are OV\@’*O’OV\@ (think about why this is true) we
can conclude the following;:

Each _linear function . f(z) = mz + b, where _m # 0 _,
has an _lverse_function .

Finding the Inverse Function

Recall that the lIﬂV@FS@ of a relation results from FGV{’/VSIV\@ Ordﬁrﬁd 'WIVS . For an

algebraically defined function, we can find the inverse by following these steps:

1. Replace f(x) with y .

2. Rewrite the equation by SWGPPW\@ X aﬂd \’/ .

3. Rearrange the equation so that \’/ 1S |90|m'6d .
. ,F -h . . —1
4. Check that y is a UNCTION ; if so, replace y with _ | (r) .

Example1 Find the inverse function of f(z) =2z — 7.

y=2x—7
r=2y—7 SWap x <>y
2u=a+7
y=32+3

fz) = lr+ %
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Example2 Find the inverse of g : (—00,0) = R, where g(z) = —1z — 3.

y:—%aj—S
x:—%y—?) SWOp x <>y
—%y:x+3
y=—2x—6 104"

g Hx)=—20-6

We also need 1o find the domain of ¢=1, which is o)
the same as the range of ¢ "~ .

~10 10
r <0 )
—%y > 0
—ly,_-3> _3
2y = /// —10 \gl(m)

g(z) > -3
domain of ¢! =range of g = (-3, )

gt (=3,00) = R, Where g l(z) = —22—6

Example3 Find the inverse of h : [—1,2] — R, where h(z) = 3z + 4.

y=3r+4
T =3y +4 Wap x <>y
y=x—4 )
— 1, 4 10179,
Yy=3r—3
hil(x) a %x N % B
In the domain of A, / ;/().x
—1<z<2 ~10 -~ 10
—3<3x<6
1<3z+4+4<10 n
1 <h(x) <10 _10|

domain of h~' =range of h = [1,10]
s T [1,10] —» R, where T (z) =

x_

[SVIPE

1
3
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2.3 Systems of Linear Equations

A 9\’/91’6”/\ O’F unahOHS is a collection of multiple (’JquaﬁOHS containing multiple

UﬂkﬂOWﬂS , or variables. A SOIUhOﬂ to the system consists of values for the unknowns
that satisfy all of the equations SIVV\UPFOW\@OUSK/ .

Example1 Verify that x =2, y =5, 2 = —3 is a solution to

r+ y+ z2=4
20 — y— z=2

r+3y+2z=11

r+y+z 2r —y — 2 r+ 3y + 22
=2+5+(-3) =2(2) —5—(-3) =2+ 3(5) +2(—3)
= =4—-5+3 =2+15-6

=2 =11

Solving Systems of Two Equations Using Substitution

1. Choose one equation, and rﬁarmlﬂ@@ it to |50|a+6 one unknown.

2. SUbghhﬂrﬁ this equation into the other and 50|V6 for the remaining unknown.

3. QUbSﬂTUTG this solution into the first rearranged equation to find the first unknown.

4. State the final solution for boﬂﬂ unknowns, by stating each value separately or together
as an ordered pair.

Example 2 { r4+2y=10 (1)
26 —3y=6 (2
Rearrange () =10 -2y ©)
Sub info (2) 2(10 — 2y) — 3y = 6
20—4y — 3y =6
—Ty=—14
Yy =2
Sub into (3): r=10—2(2) =6
Solution: r=06, y=2
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Example 3 {235 —3y=-11 (1)
3r— y=8 (2
Rearronge (2): y =37 —8 @)
Sub info () 2¢ — 3(3z — 8) = —11
20 — 9 + 24 = —11
—Tr =—35
rT =205
Sub info (3) y=305)-8=7
Solution: r=5 y=7T

Solving Systems of Two Equations Using Elimination

1. Choose one unknown you want to have OIV'VOSHE OOG‘FAFIOLGVTI’S . Make this true by
Ml/llh?h/lﬂ@ the equations by appropriate values.

2. E|IVV\IV\QJF6 this unknown by add"ﬂgl the equations.

3. §O|V6 for the remaining unknown.

4. QUbS‘hhﬂr@ this solution into one of the original equations to find the first unknown.

5. State the final solution for bOﬂﬂ unknowns.

Example 4 dr +5y=-5 (1)
{—2:10 - y="7 (2)
Mufiply (2) by 5: Sub into (2):
4o + 5y = -5 (3) _2(_5) —y = 7
—10z — 5y = 35 (4) 10—y=7
y =
Add (3 4)
i ) and (4) o
—6x = 30
r=-5 T=-=5 Y=
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Example 5 3x+4y=2 (1)
{Qm —-5y=9 (2
Multigly () by 2 and (2) by —3:

6r + S8y =4 (3)
61+ 15y = —27  (4)

Add () ond (4)
23y = —23
y=—1

2.3 Systems of Linear Equations

Sub into ()):
3rx+4(—1) =2
3r—4=2
3r =06
r =2
Solution:
r=2 y=-1

Solving Systems of Two Equations Using Graphs

Recall that when an equation is graphed, each EO'N on the curve represents an
Ordﬁrﬁd WIF that SQﬁSﬂGS the equation.

Suppose both equations of a system are graphed on the SoMe P'Qﬂ@ . Any points of

W’Gr%(}ﬂOV\ will represent ordered pairs which satisfy bOﬂﬂ equations. This is exactly
what we’re looking for as a §O|Uh0ﬂ to the system.

Example 6
y=r—4 (1)
rH+y=2 (2)
(1) = y=—x+2

Solution af 2 =3, y=—1

© 2020 Shaun Carter v. 0.3
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Example 7 6 /T y=Adz+4

r—2y==6 (1)
y=4z+4 (2)

) = y=12%2-3 | zy

6
r—2y=6

Soution ot = = -2, y = —4

Types of Solutions to Systems of Linear Equations

Each of the earlier example systems have GXQOH\/ one 50|Uh0ﬂ . This is not always the case.
Linear systems may instead have IV\1°|V\I1'6|\/ W\aﬂ\'/ SOIUhOHS , or have _ N0 90'Uh0|ﬂ .

Example8 Algebraically find the nature of the solution to this system. Represent it with a graph.

2v — y=4 (1) 6 1Y

{695 —3y=12 (2)

Mufigly () by —3:
—6z + 3y =—12  (3) | ;

6x — 3y = 12 (4) -6 6

Add 3) and (4) 0=0
— Infinifely many solutions /
6

These equations are GQUIVOHGI/\T , because they are a|Wa\/9 WU@ at the same time.
The graphical representation has W\‘F"ﬂﬂrd\/ VV\(AV\\/ IV\T@FS@CﬂOV\S because the lines are
concident .
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Example9 Algebraically find the nature of the solution to this system. Represent it with a graph.

Ad 3) and 4) 0 =12
— 1o solufion

x4+2y=-2 (1) 61Y
{23: +4y =8 (2) \
Muttigly () by —2:
—2r—4y=4 (3) \ \ z
20 +4y =8 (4) -6 \\\f;

—6 |

These equations are IV\COV\SBTBN because they CQVW\OT b@ JWU@ at the same time.
The graphical representation has Nno lN@r%&ﬂOﬂ because the lines are Eam“d

Systems of Three Linear Equations

For a system of ﬂf\r% 6aluah0ﬂ5 with er% UV\kV\OWWS , we can use the same

techniques to find a solution.

1. Use SUbSthﬂOV\ or 6I|W\|ﬂah0ﬂ to remove one unknown from the system.

2. Solve for the remaining two unknowns.

3. Use the partial solution to solve for the removed unknown. State the complete solution.

Example 10 Using substitution:

r+ y+ z2=6 (1)
2r— y+3z=11 (2)
—z+3y+42=28 (3)

Rearronge () 2= —y—2+6 (4)
Sub (4) into (2):
20—y —2+6)—y+32=11
—2y—2z+12—y+3z2=11
z=3y—1 ®)
S (4) info )
—(—y—2+4+6)+3y+42=38

© 2020 Shaun Carter v. 0.3

y+z—6+3y+42 =28
dy+ 5z =14 (b)

Sub ) into (b)

dy+53y—1)=14

dy + 15y — 5 =14

19y =19
y=1

Sb info 0) z=3(1)—1=2
S info (4) x=-1-2+6=3

r=3 y=1 2=2
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Example 11 Using elimination:

2r— y+3z=11 (2)

T+ y+ z2=6 (1)
-+ 3y +42 =28 (3)

Add () + ()
3z 44z =17
Add 3(2) + (3)
ba + 13z = 41
Multigly (4) by 5 and (&) by —3;
{ 152 + 20z = 85 (6)
—152 — 39z = —123  (7)

32
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Add (b) + (T)

—19z = —38
z =2
Sub into (4):
3x 4+ 4(2) =17
v +8=17
3r =9
=3
Sub info ()
3+y+2=6
y=1

r=3 y=1 z2=2
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2.4 Linear Regression

Functions are often used for W\Od@hlﬂgl real-world situations. Typically, the value of an
"ﬂd@?@ﬂd@ﬂf Varlablﬁ is used as an input for the function, whose output is used to predict
the value of a_depeident varioble .

Scatter Plots

A SOQ‘H'@r P'OT is a plot used to visualize the relationship between two-variables, where each
data point is treated as an Ordﬁmd 'Valr and plotted as a EOWW on a plane.

Visually inspecting a scatter plot can help decide whether a |l|ﬂ€0kr ‘FUV\OﬂOV\ is an appropriate
model for a given set of data.

The independent variable is placed on the hOHZOVﬂUI aXxIS , and the dependent variable is
placed on the V@H’ICON axis .

Example1 A voltage source is placed in an electronic circuit. [1(mA)
For various voltages, the current in the circuit is measured. The
following results are recorded: x

vV (V) \1.0 \ 2.0 \ 3.0\ 4.0 \ 5.0 \ 6.0 \ 7.0 \ 8.0 201 x
I (mA) \ 0.5 \ 5.8 \ 8.7 \ 14.5 \ 18.3 \ 21.2 \ 24.8 \ 30.7 X

Note that voltage, V', is measured in volts, V, and current, I, is 5 10
measured in milliampere, mA.

Regression

The process of ﬂ*ﬂﬂgl a function to a set of dafa in order to OKIV,WOXIVV\GTG the
association between variables is called r@@rﬁSSIOV\ . When the modeling function is linear,
it is called _lINGA reAreSSioN .

Since a linear function has the form f(QZ' ) = mx + b , linear regression means choosing

values for 170 and D in order to fit the data as well as possible.?  We will be using

T@CI/W\OlO@\/ to find these values for us.

3You may think “as well as possible” is very vague. If so, youre right! The details of what this means are not
important for Algebra 2, but they will be very important if you take a Statistics class in the future.
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Example2 For the electronic circuit example, I(mA)
40

m = 4.13929, b= —3.06429
20 |

I =~ 4.139V — 3.064

/ 5 10
The Correlation Coefficient

The 00rr@|0ﬂ'l0lﬂ C/O@’Fﬂ(}l@m’ , denoted by _T" | is a quantity that measures the SJWGV\ ﬂﬂ
and dW@OﬂOV\ of the linear association between two variables. 7 is in the interval | — 1; 1] .

strong Weak Weak strong
neqgative neqgative no posiive posiive
correlation correlation correlation correlation correlation
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | |
—1 —0.5 0 0.5 1

Example3 For the electronic circuit example, 7 = (.9969, which indicates a very STVOV\@,
posiive, linear relationship between voltage and current.

The Coefficient of Determination

The COGWC’HMGN O’F d@f@rW\IV\ahOV\ , denoted ]oy R2 is a measure of how well a
regression line, or curve, fits the provided data.* For |IV\60W F@@F@SSDV\ (but not other

types of regression) it is the SQ]UQFG of the correlation coefficient, so R2 =T 2 . Its value

is in the interval O; 1 .

Example4 For the electronic circuit example, R? = 0.9937, which indicates the r@@rassiom
model fits the dafa very well

1A statistics class would teach you that R? is the proportion of the variation in the dependent variable which is
explained by the model. Don’t worry if that doesn’t make any sense yet!

34 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 24 Linear Regression

Making Predictions

There are two types of predictions that we can make using a regression model.

|V\1’6FVO|0H10V\ means predicting values b@h/\’%ﬂ the values in the data. If the model is

a good fit for the data, then this can produce very reliable predictions.

Example5 Estimate the current in the circuit when V' =2.6 V.

I ~ 4.139(2.6) — 3.064
= 7.7TmA

Example 6 Estimate the voltage that corresponds to a current of I = 27.3mA.

27.3 =~ 4.139V — 3.064
4139V ~ 27.3 + 3.064 = 30.364
30.364
4.139

V ~ =73V

EXTFWOW’IOV\ means predicting values Olﬂ'Sldﬁ the values in the data. You need to be

careful when 6X1TWO|0H’|M because it is very difficult to know how far the trend in the data
continues outside of 1ts range.

Example7 Estimate the current in the circuit when V' = 0.3 V.

I ~4.139(0.3) — 3.064
= —1.8mA

Note tinat this prediction is unreliable.

For anyone who cares about the physics, the hypotinetical circuit in this section is
a slicon diode atfached fo a 250 resistor in series. Not only is the negafive
current in the last example on unrelable result, it doesnt even make sense given
the scenario.
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2.5 Piecewise Linear Functions

A Pl@(‘/@\/\”g@ 'FUV\ChOV\ is a function which is defined by W\UHTVl@ FU|69 , each applying
to different parts of the dOW\aW\ .

Example1l Evaluate each of the following using the function f.

2x —2<x<3
f(x) = {4 3<xr<6
—x+9 x>6
f(1) =2(1) f(5) =4 f(8)=—=8+9
f(6) =—6+9 f(3) =2(3) f(=3) Is undefined

A piecewise function can be QIMEW&d by considering each rule separately, and plotting each
on its own IVﬂ'GFVOH .

The dOVV\(AW\ of the entire piecewise function is the UNION  of the domains of the separate
rules. Similarly, the mlﬂglﬁ is the _UNION _ of the mV\@@S produced by each rule.

Example2 For function f above, plot its graph and find its domain and range.

Yy Domain:
5 [—2,3] U (3,6) U [6,00)
o—0 _ [_2’ OO)
| \ | z Range
-5 5 0 15
—4,6] U {4} U (=00, 3
= (—o0, 6]
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Example3 Define h as a piecewise function.

Algebra 2 Notes
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Absolute Value Functions

By applying meVNSfOFVV\aﬂOHS to the parent function, we get the @{’JV\GFOH WCOFVV\ of the

absolute value function:

f(x) =Alz—h|+Ek

e Graph is uEHQI{W or opens UE if Ais EOSH’IVG .
Graph is IV\V{’ﬂ'ﬁd or opens QOWW if Ais V\@gl&hV@ .

e Graph has two IIV\GQF intervals, whose slopes are +A .
e Graph has a V@H’GX at ( hq k ) .

A sketch of an absolute value function should include:

shape of curve

V"' chope with enough points 1o show Slopes

vertex

(h, k), using tranglation of parent function to identify

z-intercepts

y =0, find z by soving f(z) =0

y-intercept

=0 find y by evaluating y = f(0)

endpoints

evaluate e function at the bounds of the domain

Example 4 Sketch g(x)

=2z +3|+4.

Orientation: [Nverfed
Slopes: m = +2
Vertex: (—3,4)
a-intercepts: (—5,0) and (—1,0)
—2|lz+3|+4=0
—2|x+3]=—-4
x4+ 3| =2
r+3=-202+3=2
rT=-50 x=-1

y-intercept: (0, —2)
0s f(0)=—-23|+4=-2
endpoints: NONe, s domain s R

38
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Example5 Find the function f represented by the following graph.

y Orientation: Upright
Slopes: m = +3
— A =43

z Vertex: (3, —9)

— h=3,k=-9
flx)=3lr—3]—9

Example 6 Find the range of f:[2,9) — R, where f(z) = 5 |z — 4| + 3.

The bounds of the range will occur at the endpoints or af the vertex
At the verfex: f(4) =3

Left endpoint: f(2) =112—-4/4+3 =1-2+3 =4

Right endpoint: f(9) is undefined, 3|9 —4|+3=1-5+3 =24
Range 15 [3, %)

Example7 Find the transformations required to transform f(x) =2z — 2|+ 1 to
g(x) = =3 |z + 1] +6.

o Reflect across fhe z-axis

glx) = =3z +1]+6 ° ?’rrfmhmcfgovvx the z-oxis by a
= 32|z +3) -2 +1+5 aetor ot 3
= 3f(x+3)+5 o Shift 3 units left

« Shift b unifs up

© 2020 Shaun Carter v. 0.3 39



Chapter 2 Linear Functions and Equations Algebra 2 Notes

Example 8 Express f(x) =5 |z — 4|+ 7 as a piecewise function.

When = —4 > 0 When = —4 < 0
flx)=5(x—4)+7 flx)=5(—x+4)+7
=b5r—20+47 = —bxr+20+7
= 5Hr — 13 = —dx + 27

5r—13 1 >4
fz) =
~5r+27 x <4

40 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes

Chapter 3

Quadratic Functions and Equations

3.1 Quadratics in Vertex Form . . . . . . . . . . ... 42
3.2 Quadratics in Factored Form . . . . . . . . . ... . ... 46
3.3 Review of Distributing and Factoring . . . . . . . . . .. ... ... . L. 48
3.4 Special Quadratics . . . . . . . .. e 52
3.5 Factoring Quadratics in Standard Form . . . . . . ... ... ... .. L. 56
3.6 Completing the Square . . . . . . . . . . . L 60
3.7 The Quadratic Formula . . . . . . . . . ... 63

© 2020 Shaun Carter v. 0.3 41



Chapter 3 Quadratic Functions and Equations Algebra 2 Notes

3.1 Quadratics in Vertex Form

A quadmﬂo GX'W@SSIOV\ is an expression which can be written in the form (with a # 0):

ax® + bx + ¢

A quadmﬂc ‘FUV\ChOV\ is a function consisting of a quadratic expression. The three forms
of these functions we usually consider are

standard form f(z) =az® +bx +c
vertex form f(x)=A(x —h)*+k
factored form f(x) =a(z+p)(z+q)

The Quadratic Parent Function

parent function
fla) =2

domain

R

range

0, 00)

relation type

many-fo-one

x-intercept

(0,0)

y-intercept

(0,0)

vertex

(0,0)
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Solving Quadratic Equations Using Square Roots

A dllmdmﬂ(} unahOV\ is any equation which can be written with a quadmﬂ(‘;

GXVFGSSIOH on one side and _Z€I0  on the other. Note that this might not be the original
form of the equation.

If an equation is written in V@HV@X 1°OYVV\ , it can be solved using 9quar€/ rOO‘i’ 5 .
1. Rearrange the equation to ISOW@ the quantity which is Squarﬁd .

2. Eliminate the square with a SQUQFG FOOT . Consider both the IVOSth@ and ﬂ@@ﬂhV@

square roots.

3. Finish solving the equation by |90|ahﬂ€| x.

Example1 Solve 2(x —4)? —5=13 Example2 Solve —3(z+5)2+7=7
2(r —4)> =5 =13 3z +5)°+7=7
2(x —4)* =18 —3(x+5)°=0
(x—4)?=9 (z+5)72=0
r—4=+V9 =43 r4+5=0

r=4+4+3 r= =5

r=10 z=7

Example3 Solve (z+2)2—-7=0 Example4 Solve 2(z —6)2+9=1
(z+2)*—-7=0 2(x—6)*+9=1
(x+2)72=7 2(x — 6)* = -8
(x4 2)% = +V7 (x—6) = —4
r=—24+7 — 1o rea solution

Note that quadratic equations may have Z80 , ON% , or MO real! solutions.

Tn an upcoming lesson, you will see that it is possible to get solutions that are not real numbers! For now, we're
only considering the real numbers.
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Graphing Quadratic Functions Using Vertex Form

By applying meV\SfOFVV\OmOHS to the quadratic parent function, we get the V@H@X fOFVV\

of a quadratic function:

fx)=A(x —h)?+k

e Graph is UEHQIV]T or opens UE if Ais EOSH’IV@ .
Graph is W\V@H’@d or opens dOWV\ if Ais V\Gglahv{i .

. A corresponds to a SWGTCV] or COVV\'WGSQOV\ from the z-axis.
e Graph has a V@F’F@X at (h, ]{7) .

A sketch of a quadratic function should include:

shape of curve | parobola with enough points o show strefeh/compression

vertex (h, k), Using translation of parent function o identify

z-intercepts y =0, find = by SOMV\@ f(x)=0

y-intercept =0, find y by evaluaﬁm y = f(0)

endpoints evaluate the function at the bounds of the domain

Example5 Sketch f(x) = (z — 3)% — 4.

Orientation: Uprlglnf y
Vertex: (3, —4) ;
z-intercepts: (—5,0) and (—1,0)
(x—3)2—4=0
(x—3)*=4
T —3=+V4=+2 1 5 x
r=3+%2

r=10 =5

y-intercept: (0,5)
0s f(0)= (-3 —-4=5

endpoints: NONe, 0s domain Is R
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Example 6 Find the function g represented by the following graph.

y Vertex: (4, 24—5) — h=4,k= %

6Ll g(x) = Alx —4)* + %
y-intercept: (07 %)

, g(0) =164+ 2 =2

L

16A=-4 = A=—

21 9 Domain: [O, 9)

g:10,9) — R, where
g(z) = —g(@ —4)* +

Example7 Find the range of h : [-3,1] — R, where h(z) = —2(z +2)? + 7.
The bounds of the range wil occur af the endpoints or af the verfex.
A the verfex: f(—2) =7

Left endpoint: f(—3) = —2(—=3+2)*+7 =-2-1+7 =5
Rght endpoint: f(1) = —2(14+2)*+7 =-2-9+7 =-11
Ronge 15 [—11,7]

Zeros, Roots, Solutions and x-Intercepts

These terms are related, but have subtly different meanings.
The FOOT S ofan expression are the values which cause the expression to equal 2810 .

The 90|Uh0ﬂ5 of an equation are the values which cause the equation to be WU@ .
The Z8I0S  of a function are the input values which cause the output value to be 220 .

The X-IN@FC@PTS of a graph are the points where the curve Crosses ﬂﬂ@ X’XmS .
Examples (\Working in Example b))

The 50'Uh0|ﬂ5 of (x—3)2—4=0are | ond 5.
The _Z8I 0S5  of f(z) = (# —3)2 —4 are 1 and 5.

The FOOTS of (x —3)2 —4are | ond 5.
The X’IN@H‘J@PTS of the graph of y = (z — 3)% — 4 are (1, 0) ond (5, 0).
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3.2 Quadratics in Factored Form

The Zero Product Property

If ab=0 ,then_a=0 or b=0 or_ a=b=0.

Equivalently, if the EFOQUCJ( of a set of WCOKCJ'OFS is _Z€I0 | then at least one of the
factors s _zero

Quadratic Equations in Factored Form

Example1l Solve 3z(x —5) =0 Example2 Solve (zx —4)(z+7)=0
3x(x —5)=0 (x—4)(x+T7)=0
3r=00 z—-—5=0 r—4=00 x+7=0
r=00 =25 r=40 x=-T7
Example3 Solve (bz —2)(7Tx +4) =0 Example 4 Solve (37 —8)%2 =0
(50 —2)(Tw +4) =0 (32— 8)(3x —8) =0
br—2=00 7Txr+4=0 3r—8=0
br =2 O0F 7Tx = —4 3r =8
L:% or x:—% LL‘Z%

Graphing Quadratic Functions in Factored Form

We can use the zero product property as above to find

the X"'iﬂf@ﬂ‘;@?fg of the graph.

To find the V@H?/X , we can use the symmetry of

the parabola. The aXIS O‘F 9\'/VV\VV\6‘IT\/ passes

through the V@H%X , as well as exactly halfway
between the X—W@FOGIVJ(S .

h is the aV{’nglﬁ of the zeros of the function, and
k is the value of the function evaluated at h.

(h, k)
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Example5 Sketch a graph of f(z) = (x — 2)(x — 10).

Y vz =6
z-intercepts: (2,0) and (10,0) 2; :
fl2) =0 = =20 =10 |
y-intercept: (0, 20) E
f(0) = (—=2)(—10) = 20 l
! 10 x
vertex: (6, —16) 9 !
2+ 10 E
h - — = 6 |
2 |
k= f(h)=(6—2)(6—10) = —16 '
)= (6 -2)(6 - 10 L
endpoints: NONe, as domain Is R '
Example 6 Find the function g represented by the following graph.
91 a-intercepts: (—7,0) ond (—3,0)

_7/\_3 .

g(x) = alx +7)(x +3)

y-intercept: ( , —%)

g(0) =a(7)(3) = 21la = _z2l

2
_% a:—%
\ 1
g(x) = —§(x+7)(x+3)

Example7 Write f(x) = (1 — z)(x + 6) in vertex form.
Zeros of f+ (1—x)(z+6)=0 F1)=0 = A(1+3)*+% =0
— r=10 2xr=—-06 o 1

:1+—(_®:_§ ZAEE)I:O@

2 2 TA=—7

k=f(h)=(1+3) (-3 +6) A=-1

—T.7_ 4 ,

2°2 7 14 5
f@)=—(r+3)" +7
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3.3 Review of Distributing and Factoring

The dleFlbUﬂV@ ,WO,WJFT\,/ is one of the most important rules in algebra. Many of our

results going forward are derived from it.

The Distributive Property

a(b+c) =ab+ ac

Example1 Verify 8§(7+5)=8-7+8-5 Example2 Verify 3(20-6)=3-20—3-6
8(745)=8-12 3(20 — 6) = 3 - 14
= 96 = 42
8-7+8-5=256+40 3-20—-3-6 =060 — 18
= 96 =42

The process of changing a(b 4+ ¢) to ab + ac is called

distributing . b +c
The reverse process is called faoforllﬂgl .
The bOX M@ﬂﬂOd can be used to V|5Uﬂ|lZ@ the Qa (Zb —+ ac
distributive property.

Distributing

To dléfrlbtﬂ'@ algebraically, multiply each T@H’V\ inside the parentheses by the ‘Fad'or

outside the parentheses.

Example 3 Distribute 3z(2z — 4) Example 4 Distribute —4y(7y? + 5)
20 —4 7y? +0y 45
3z | 622 |—12z —4y [-28y3| —0y? | —20y
32(2r — 4) = 62 — 122 —4y(Ty* +5) = —28y> — 20y
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Example5 Distribute 3z%(x* — 223 + 52 — 1)

x4 =223 4022 +5r -1

322 | 326 |—62°[+0z* H-1523 —3x2

322(z* — 22 + 52 — 1) = 32° — 62° + 152° — 32°

If there are MO sets of parentheses, we need to d|STFIbUT6 over both. EV@F\/ T@rVV\
in the first set of parentheses is multiplied by GVGF\/ T@H’V\ in the second set of parentheses.
After distributing, make sure you C/OVV\IOW\@ ||l<6 T@H’V\S .

Example 6 Distribute (z +4)(z — 7) Example7 Distribute (2x + 3)(z + 6)
x +4 2x +3
x x2 | +4x x 222 | +3z
—7 | =7x | —28 +6 [+12x| +18
(z+4)(z —7) =2° — 30— 28 (22 + 3)(x + 6) = 22% + 15z + 18

Example 8 Distribute (3z — 5)(z3 + 222 — 7)

x> 222 +0x 7

3z 3z4 |+623 | +0z2 |21z

-5 =523 1—1022 —0x | +35

(3z — 5)(2® + 20* — 7) = 32" + 2° — 102 — 212 4 35
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Factoring Using the Greatest Common Factor

If all the TGFVV\S in an expression have a fQOTOF which is the same, that ’Fac‘for is
called 2 _COMMON_factor .

The @i’@&d’@ﬁ' common WCOKOJFOF , OT GCF , is the largest possible common faCTOF

for the expression.

To factor, we can leld@ every term by the QCF , and write the result in P&F@V\ﬂﬂﬁ%s ,
with the QCF written in front. As the expression has been both leld@d and VV\UH'|'V||6d

by the QCF , the result is equivalent.

This method of ’FQCTOHV\QI is the simplest and should be attempted WCIFST . If this is done
correctly, there will be no common fQCJFOFS remaining.

Example9 Factor 9m? — 12m?

3m —4

3m 93 —12m?

Im* — 12m? = 3m?*(3m — 4)

Example 10 Factor 12ab + 24a%b> — 42a*b*

2a +4b* —Ta?b?

6a2b 12a3b +24a%b° —42a*b*

12a°b + 24a%V° — 42a*b* = 6a°b(2a + 4b* — 7a*b?)

50 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 3.3 Review of Distributing and Factoring

Quadratics with Common Factors

We’ve already seen that faCTOFGd WCOFVV\ can be convenient for finding the zeros of a function.
In certain circumstances, ‘Fﬂ(‘fl@ﬂﬂ@ ﬂﬂ@ & CF can change a quadratic expression/function

m _standard form o _factored form

Example11 Solve 1522 4 10z = 0 Example 12 Solve 222 = 8z
152 + 102 = 0 21% = 8z
52(3x +2) =0 222 — 8z =0
br=00 32+2=0 2x(x —4) =0
r=00 3zx=-2 2c =00 z—4=0
szOsz—% r=00 =4

Example 13 Sketch a graph of f(z) = —322 — 152.
factor: f(x) = —3x(x + 5)

a-intercepts: (0,0) and (—5,0)

flx) =0 = =00 2=-5 +18.75
y-intercept: (0,0)

F(0) = —3(0)2 — 15(0) = 0

vertex: (—2.5, 18.75) — T
—2.5
Pl ol ) P
2
k= f(h)
= —3(—2.5)% — 15(—2.5)
= 18.75

endpoints: NONe, s domain Is R
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3.4 Special Quadratics

In the previous section, we factored select quadratics in standard form using the greatest common
factor. The following rules will allow us to factor other special cases.

Theorem: Perfect Squares

a* +2ab +b* = (a +b)?

a? —2ab +b* = (a — b)*

Proof
(a+b)? = (a+b)(a+Db) a  +b
=a(a+b) +bla+b) ,
= a® + ab+ ab + b? . a +ab
= a’ + 2ab + b
@ +b | +ab | +b?
Replace b with —b 1o obfain fihe second resulf. N

Theorem: Differences of Squares

a* — b’ = (a+0b)(a—Db)

Proof
a +b
(a+b)(a—"0b)=ala—0b)+bla—0>)
= a* —ab+ ab — b* a a2 | +ab
_ CL2 o b2
| —b | —ab | —b?
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These rules can be used for dlSW“QUhV\@ :

Example1l Distribute (z + 10)? Example2 Distribute (224 7)(2z —7)
Using a =z and b = 10, Using a =2z and b =7,
(z +10)? = 2° + 20z + 100 (27 +7)(2x — 7) = 42* — 49

The rules can also be used for faOTOFIV\gl :

Example3 Factor 22 — 81 Example 4 Factor 2522 — 30z + 9
Using a =z and b =09, Using a =5z and b =3,
22 —81 = (z+9)(z —9) 2527 — 30z + 9 = (52 — 3)?

It is always a good idea to attempt to faGTOF UEIV\@ ﬂﬂ’& & CF before factoring with any

other method, including special quadratics:

Example 5 Factor 522 + 20z + 20 Example 6 Factor 6322 — 175
522 4+ 20x + 20 = 5(x* + 4o + 4) 632% — 175 = 7(92” — 25)
= 5(x + 2)* = 7(3z +5)(3x — 5)

As with all quadratic equations, equations in these forms can be solved wusing the

Zer0_product property i they ave _foctored -

Example7 Solve 422 4 196 = 56z Example8 Solve 1222 — 75 =0
42 — 561 + 196 = 0 3(42% —25) =0
4(x* — 14z +49) =0 42° —25 =10
r? — 14x +49 =0 (22 +5)(22 —5) =0
(x—7)=0 2r = +5
r=7 T = :I:%
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Perfect Squares and Differences of Squares as Functions

Note that the _PRITOCT SOUAIRS and _dfTeIeNES Of SQUAIES rutes are useful for

converting these types of quadratic functions between their three forms:

perfect square

difference of squares

standard form

f(x) = 2% + 2mz + m?

g(x) = 2>~ v

vertex form

f(z) = (x4 m)?

gx) = 2> —

factored form

flx) = (x + m)*

g(x) = (z +n)(z —n)

Example9 Sketch a graph of f(z) = —2x2+122—18.

factor: f(z) = —2(2*—62+9) = —2(x—3)?

z-intercepts: (3,0)
flx) =0 = x=3

y-intercept: (0, —18)

f(0) = —18
vertex: (3, 0)
h=3, k=0

endpoints: NONe, as domain is R

Example 10 Sketch a graph of f(z) = 322 — 12.

factor: f(x) = 3(562 — 4) = 3(:6 + 2) (LL’ — 2)

z-intercepts: (—2,0) ond
flx)=0 = x =42

y-intercept: (0, —12)

£(0) = —12
vertex: (0, —12)
h=0, k=-12

(2,0)

endpoints: NONe, 0s domain Is R
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Example 11 Write g(x) = (z — 5)2 — 9 in factored form.

This is a difference of squares with a =z — 5 and b = 3.

g(x) = (z —5)* =3
=(r—-5+3)(x—5—3)
= (v —2)(z - 8)

Example 12 Write h(x) = (x + 7)% — 12 in factored form.

This is a difference of squares with a = 2 +7 and b = V12 = 2V/3.

h(z) = (z+7)* — (2\/5)2
— (x+7+2\/§> <x+7—2\/§)

Further Factoring Examples

While perfect squares and differences of squares are examples of Quadmﬂo expressions, they
can also be used to factor certain other PO|YHOM|Q|§ 2,

Example 13 Factor 8z — 1822

8rt — 1827 = 2% (42% — 9)
= 22%(2x + 3)(27 — 3)

Example 14 Solve 523 + 6022 + 180z = 0 Example 15 Factor z* — 1822 + 81
3 9 Let u = 22
5x° + 60x” 4+ 180x = 0
5a(x? + 122 + 36) = 0 ot — 1827 + 81 = u? — 18u + 81
53(x + 6)2 = 0 = (u—9)*
r=00 z=-6 :(952_9)2

= [(z+3) (z = 3))°
= (2 + 3)*(z — 3)*

2We'll discuss polynomials in detail in a later chapter.
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3.5 Factoring Quadratics in Standard Form

Recall that the 91’aﬂdard fOYVV\ of a quadratic expression is
ax’® + bx + ¢

Factoring Monic Quadratics

A quadratic expression is called Mmonic it a =1 .

If a monic quadratic expression 2 + bz + ¢ has values p and ¢ such that

b=p+q and c=p-q

then
4 br+c=(x+p)(r+q)
Proof
) ) r +p
r“4+br+c=x"+ (p+q)r+pqg
.2
= 2" + pr + qr + pq ’ 2 | +pz
= z(z +p) +q(z+p)
= (z+p)(x +q) ] +q | +qr | +pq
Example1 Factor z2 + 7z + 12 Example2 Factor 22 — 3z — 40
x +3 x -8
x 22 | +3z x 2 | -8z
+4 | +4x | +12 +5 | +5x | —40
4+ T7r+12 = (x+3)(x + 4) 22 —3x —40 = (z — 8)(z + 5)
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Factoring Non-monic Quadratics

Often, a NON—MoNIC quadratic can be factored as if it were MonIC by first factoring using

the QCF .

Example3 Factor 622 — 30x + 36

62> — 30z + 36 —42* + 362 + 88
= 6(2* — 5x +6) = —4(2* — 9x — 22)
= 6(x — 2)(x — 3) = —4(z — 11)(x + 2)

Example 4 Solve —4z? 4 36z + 88

If this is not an option, then the following theorem can be used to help factor using the box method.

In a 2 x 2 box using the box method, the EFOQUOTS of the values along

each dl&g)OVW are the same.

Proof

Consider the general expression (a +b)(c+d) , which is
distributed using the box method.

Along the first diagonal: _QcC - bd = abcd

Along the second diagonal: bc - ad = abed |

Example5 Factor 5z + 28z — 12

The first diagonal contains %4 2 and _—12 .

The second diagonal has sum 282 and product —60x 2 .

—> second diagonal is —22 and _30x .

Finding common factors for each row and column gives

5a? + 28z — 12 = (52 — 2)(x + 6)

© 2020 Shaun Carter v. 0.3

+d

+6

a +b
ac | +be
+ad | +bd
ox —2
x| -2z
+30z| —12

57




Chapter 3 Quadratic Functions and Equations

Example 6 Factor 1222 — 24z — 15

2 -5
2¢ | 422 |—10x
+1 | +2x2 | —5

122 — 242 — 15
= 3(42* — 8v — 5)
=32z —5)(2x + 1)

Solving Equations by Factoring

Algebra 2 Notes

Example7 Factor —1222 + 58z — 18

3x —1
2¢ | 622 | —2x
-9 (=272 +9

—122% 4 58z — 18
= —2(62% — 29z +9)
= —2(3z—1)(2x —9)

Recall that a 90|uh0ﬂ to an equation is a value which causes it to be TFUG . For quadratic
equations, faGfOHﬂgl allows us to use the Z&(0 'WOdUOT IVFOIVGH'\II to find the solutions.

Example8 Solve 22 4 152 + 36 = 0

2?4+ 152 +36 =0
(x+3)(z+12)=0
r+3=00 r+12=0
r=-3 0 x=—12

Example 10 Solve 422 4 25z — 21 =0

4a® + 250 — 21 = 0
(4 —3)(x +7) =0
e —3 =00 2+7=0

_ 3 .
r=7 0 r=-7

58

Example9 Solve 22 +5 = 8z + 14

2?45 =8+ 14
22 —8r—9=0
(z—9N(x+1)=0
t—9=00 z+1=0
r=9 0 r=-1

Example 11 Solve 2022 — 562 — 12 = 0

202% — 562 — 12 =0

A(z* — 14z —3) =0

br+1)(x—3)=0
Sr+1=00 z—3=0

x:—% or xr=3
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Graphing Using Factoring

3.5 Factoring Quadratics in Standard Form

We'’ve already graphed quadratic functions in faOTOH’Jd ‘FOH’V\ . Using the same methods, we

can graph quadratic functions in STQHdard fOFW\ if they can be ‘Facforﬁd .

Example 12 Sketch a graph of f(z) = 22 + 2 — 2.
factor: f(z) = (x 4+ 2)(z — 1)

a-intercepts: (—2,0) ond (1,0)

fl2)=0 = z=—-20 z=1
y-intercept: (0, —2)

vertex: (—0.5, —2.25)

—2)+1
h="21— 05
k= f(h) =(=0.5)*+ (—0.5) —2 = —2.25

endpoints: None, 0s domain s R

Example 13 Sketch a graph of g(z) = —22% + 92 — 9.

factor: g(z) = (—2x + 3)(z — 3)

z-intercepts: (1.5,0) and (3,0)

gx)=0 = =150 =3

y-intercept: (0, —9)

vertex: (2.75,1.125)

h =238 =275

k=g(h) = —2(2.75)* + 9(2.75) — 9
—1.125

endpoints: NONe, s domain Is R
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3.6 Completing the Square

While many quadratic expressions can be WCQCTOFBQ directly using the methods in the previous
sections, most cannot. Instead, we use can a technique called (‘JOW\PIG‘hV\@ ﬂf\@ Squarﬁ )

The goal is to rewrite the expression so that it contains a V@FP@CT SQUOWG , which is then

factored. The result is an expression in V@H'GX 1°OFVV\ . This makes it possible to SO|V€/
the related unahOV\ , Or @mplﬂ the related ‘FUV\CﬂOV\ .

The diagram to the right shows that 22 o | o |
22 + 6x + 4 is not a perfect square, but its

square can be COW\PBT@d by adding and

subtracting 5 . L

_
8
||
[-]
|
[-]]

IO@O@OE
OOOOE

| v | 0
Example1 Solve z2 + 6x + 4 = 0 by completing the square.
Step 1: Identify the constant which completes 22 4+ 6244 =0
the square. L

want o be +9

Step 2: Add and subtract to complete the perfect 72 L 6r4+9-5=0
L 1

square.
perfect square
fStep 3: Factor the perfect square to get vertex (l 4 3)2 _5-0
orm.
(x+3)32=5
Step 4: Solve using the square root method. x4+ 3= j:\/g

r=-3+5
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Example2 Solve 22 — 102 +7 =0

a— lOajﬂ =0
want fo be + 25
22— 10x +25—18 =0

(x—5)7—-18=0

(z —5)° =18
T —5=43V2
=54 3V2

Example4 Solve 224+ 3zx+1=0

$2+3:UL1:O
want fo be +2
x2+3x+%—%:()
3\2 5 __
(¢+3)"—3=0
3\2 _ 5
(z+3)" =3

_ 3 1 \5

Example 6 Write f(z) = 22 — 8z + 13 in
vertex form.
f(z)=2" -8z +13
=2>—8r 416 —3
= (v —4)* -3

© 2020 Shaun Carter v. 0.3

3.6 Completing the Square

Example3 Solve 22 +22 —5=0

$2+2I‘;5:O

wont fo be +1
2?4202 4+1-6=0
(z+1)*—=6=0
(z+1)*=6
r+1=+4V6
r=-14+V6

Example5 Solve 422 + 20z 4+ 18 =0

42% 4+ 202 +18 = 0
want to be +25
4 + 200 +25—T7=0

(20 +5)—7=0

(20 +5)72 =7
200 + 5 = +7
20 = -5+ 7
x:—%ig

Example7 Write g(z) = —222 — 202 — 59

in vertex form.

g(x) = —22° — 202 — 59
= —2 (2 + 102 + %)
= —2(2* + 10z + 25 + 2)
= —2[(z+5)*+ 2]
= —2(z+5)* -9
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Example 8 Sketch a graph of f(z) = 22 — 6z + 1.
z-intercepts: (3 — 2\/5, 0) and (3 + 2\/5, O)
flx)=2®> -6z +9—8

= (z—3)* -8
=0
(x—3)* =38
T —3=42V2
r=3+2V2

y-intercept: (O, 1)
vertex: (3, —8)
endpoints: NONe, as domain is R

62
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3.7 The Quadratic Formula

An alternative method to (‘JOW\VI@“V\@ ﬂﬂ@ Sa'uarﬁ is using a WCOWV\UIOK to directly find
the §O|uh0|ﬂ5 to a quadratic equation.

Theorem: The Quadratic Formula

A quadratic equation in standard form, CL$2 +bxr+c=0 , can be solved

directly using the formula

b= V% — 4dac

X
2a
Proof
ar’ +br+c=0

b :
7 + — T+ ‘ = divide both sides by a (1)

a a
" ’ + v v S lete th 2

x -4+ — - — + - =
P 102 102 P complete the square (2)
er2 v dac 0 factor and simplify (3
€T —_ _—— =
% 102 actor and simplify (3)
n b 2_b2—4ac ot . -
x > = 12 isolate squared expression (4)
b Vb2 — 4dac
rT+ — =+ ——m take the square root (5)
2a 2a
—b £ Vb — dac

Tr = %0 finish solving for z (6)

The quantity b2 — 4dac  is known as the dlSOFIVV\lmV\J( , denoted by A , the upper case
Greek letter d@Ha . We can use it to state a simplified version of the quadratic formula.

r=—— wihere A = b — dac
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Example1l Solve 222412 —28=0 Example2 Solve 322 = 2z + 2
a=2 b=1c¢=-28 322 — 22 —2=0
—b+ V% — 4ac a=3, b=-2 c¢c=-2
e 2a A = b — 4ac
_ —(1) £ V(1) —4(2)(=28) = (—2)% — 4(3)(~2)
2(2) = 28
_ TlEv2d —(—2) £ /28
4 SATE
—1+15 (3)
=T 2427
_—-1-15  —1+415 6
Ty ‘ 1 1 V7
7 i
r=—40 =3 3 3

Counting Real Solutions

The 9@“ of the dlSOYIW\IMVﬂ' is particularly useful for finding the number of

r60k| 50'Uh0|ﬂ5 to a quadratic equation. This also corresponds to the number of
X‘IN@H‘J@P‘E in the glrﬂph of a quadratic function.

A>0 A=0 A<O0
, b+ Ve b b+ Ve
solutions _ — _
2a 2a 2a
number of real
solutions hNO one 2600

x T \/x
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Graphing Quadratic Functions in Standard Form

Recall that the z-coordinate of the V@HVGX , h, is b
the avar&@@ of the _ Z8I0S  of the function. :

Since the _ Z8I0S  of the function are given by the

quadmﬂc WCOFVV\UHG , we get that their average z N
is given by ;
b= ——
2a

(h, k)

This formula holds even if there are not two real zeros.

This gives us the final tools we need for graphing quadratic functions in standard form.

shape of curve | parabola with enough points o show strefch/compression

vertex (h, k), USW\@ h = —% ond k = f(h)

y =0, find = by soving f(z) = 0 using factoring, completing
the square, or quadratic formula

r-intercepts

y-intercept (0, ¢)

endpoints evaluate the function ot the bounds of the domain

Example 3 Sketch a graph of f(x) = —0.52? — 3.2x + 5.8, with z-intercepts to 2 decimal places.

a=—0.5, b=-32, c=0528
a-intercepts: (—7.87,0) and (1.47,0)

 —(=32) £ \/(—3.2)2 — 4(—0.5)(5.8)
B 2(—0.5) .

5.8
= —T7.87 0or 1.47 \
y-intercept: (0,5.8) <

—7.87 1.47
vertex: (—3.2,10.92)

—3.2

(-3.2,10.92) ¥

X

k= f(—3.2) =10.92
endpoints: NONe, s domain s R
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Example 4 Sketch a graph of g : [0,6) — R, where g(z) = 222 — 8z + 11

a=2  b=-8 c¢c=11
a-intercepts: NN

A= (-8)2—4(2)(11) = —24
y-intercept: (0, 11)

vertex: (2, 3)

_ -8 _
= —55 =2

E=g(2)=2(2)*-812)+11=3
1

endpoints: (0, 11) ond (6,35)

Converting Quadratics Between Forms

(0,11)

Algebra 2 Notes

Throughout this chapter we've seen examples of converting between the three forms of quadratic

functions. This diagram summarizes those methods.

vertex

standard

use differences of squares

L\

form

i\

)

overage zeros 1o find h

factored
form

In practice, if converting between vertex and factored forms, it’s often easier to convert to standard

form first.

66
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41 Complex Numbers

Recall that some quadmﬂ(} ﬁalua‘hOV\S have _ N0 r60k| 90|Uh0|ﬂ9 , even if they are
something simple, such as
?+1=0

We can solve equations like this by introducing numbers outside the set of real numbers, known

as_IMaginary numbers

The |W\a@lﬂar\/ UV\H’ , denoted by { , is a number defined as having the property

it =1 — V—1=i
and is a solution to the equation above.

he EOWGFS of ¢ follow a very particular pattern:

i° 1
it 1
i? —1
i3 i2i=—1-1 —i
i 3= —i1 = —° 1 P2 =
I itei =11 i
6 Pl =0-i=1 —1
i’ 0 i =—1-4 —1
i® i =—i i = —2 1
Example1l Evaluate each of the following.
2-27 _ (24)6 . iS 2-394 _ (Z-4)98 . 7:2 7;—23 _ (2-4)—6 . ’il
=10 (=0) =1%. (-1 =154
= —1 = —1 =1

'Don’t let the name fool you! Imaginary numbers may be abstract, but so are all numbers, and that doesn’t mean
they don’t exist. Imaginary numbers have many applications in science and engineering. The mathematical terms
real and imaginary are not entirely accurate, but they’ve been around for so long that we’re stuck with them.
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An |W\0t@||ﬂ0kr\/ HUMbﬁr is any F60k| HUMbﬁr multiplied by L .

A COVV\'V|€'X V\UVV\bGF is any number of the form _ @ D7 where a and b are real numbers.
Note that it O = () , the resulting complex number is real. Therefore, the real numbers are a
SUIQ§6+ of the complex numbers.

Typed | Written Name Description
C ﬂﬂ@ COMP|6X The set containing all Fﬁal and IVM@IV\O&F\/
numbers numbers, and their linear combinations.

For a given complex number, z, the r@al Pﬂrf is denoted by RG(Z ) , and the
Wv\a@lﬂﬂr\/ 'VQH' is denoted by Im§ zZ) .

Example 2 Find the real and imaginary parts of each of the following.

271 =3+T1i z9 = —0+ 111 23 =9 — 13
Re(z1) =3 Re(z9) = =5 Re(z3) =9
Im(z) =7 Im(z9) = 11 Im(z3) = —13

Adding and Subtracting Complex Numbers

To add and subtract complex numbers, add and subtract the F6a| and IW\a@lmr\/ parts
of the numbers independently. That is,

Re(z1 & 29) = Re(21) & Re(22) Im(z; & 29) = Im(27) & Im(29)

Example3 Evaluate the following using z1, zo and z3 above.

2+ zm=(3-5)+ (7T+11)i zo+23=(—5+9)+ (11 —13)i
= -2+ 18 =4—-2

23—21:<9—3)+<—13—7)i 21—22:<3+5)+(7—11)i
=6 — 201 =8 —41
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Multiplying Complex Numbers

Complex numbers can be multiplied using the d|§1TIbU1’IV6 PFO!?@TT\/ as usual, which we
can represent using the IQOX W\@HﬂOd . Don’t forget to replace 7;2 with _—1 .

Example 4 Evaluate (2 + 5i)(3 — 7i) Example 5 Evaluate (—1 — 8i)(5 — 41)
2 +517 -1 —&
3 6 |[+15¢ 5 —5 | —40¢
—7i | —142] 35 —47 | +471 | =32
(24 5i)(3 — 7i) = 41 + i (=1 — 8i)(5 — 4i) = —37 — 36i
Complex Conjugates

The COI@uglOd'@ of a complex number is the result of F@V@FSW\@ the S@H of the
imaginary part of the number. The real part is UV\GV\GM’&d . COI@U@O&TIOV\ is denoted by
a V\OFIZOVﬂ'al bﬁr over the number or variable.

Example 6 Find the conjugate of each of the following.

271 =3+T7 2 =—-5b+111 z3=9—13
Z1=3—Ti Z9 = —H—11i Z3 =9+ 13

Example7 Multiply z = 3 — 4i by its conjugate.

3~ 22 = (3 — 4)(3 + 49)
= 94120 — 12i + 16
— 95

3 9 |—122

+40 | +12¢ | +16
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Dividing Complex Numbers

When we divide, the aim is to write the final result in the form _Q bt , which takes a little
more algebraic manipulation than the other operations.

This method relies on the property that the ErOdU(ﬁ' of a complex number and its OOV)JU@QT@

isa_leal number .
1. Write the division as a ‘FraChOﬂ .

2. _MUBIPY both the _NUMEIOTOr and _dENOMINGIOC by the _CONUAALE of the
denominator .

3. Evaluate each EFOdu 1’ .

4. Simplify to the form _Q —+ bt .

2
Example 8 Simplify 3

+ 5i 3 +51
2 2(3-5i)
3+5i (34 5)(3 — 5i) 3 9 | +15¢
_ o 1o —5i | —15i | +25
34
_ 3 5
=17 1t
Example9 Simplify ?t;iz 3 vy
3+4i  (3+44)(5+ 20)
5—2i (5—26)(5+ 2) 5 | 15 |+20d
_ T +2i | +6i | -8
29
= 55 + o 5 -2

o 25 | —10¢

+2¢ [ +10¢| +4
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4.2 Quadratic Equations with Complex Solutions

Recall that when the dlSGTIVV\W\OW of a quadratic equation, A = b? — 4ac, is V]@gl&hV@ ,

the equation has no r@al solutions. It turns out that these equations do indeed have solutions.

Every quadratic equation az? + bx + ¢ = 0 has MO SQ|UhOV\§ (when multiplicity?
is considered), whose nature is determined by the dlSC/er\W\aVﬂ' A = — dac:

1. If A > 0, then there are MO dighﬂ(‘ff rﬁﬁl 50|Uﬂ0|ﬂ9 .
2. If A =0, then there is _0N® r60k| SO|UhOﬂ with a multiplicity? of two.
3. If A <0, then there are Two COW\IVI@X COVliuga’rﬁ solufions .

Example1l Solve each of the following equations with complex solutions.

?+9=0 475 =0 (x+4)*+36=0
7t = -9 r? = 75 (z +4)? = —36
r=+v-9 r=+vV-T5 T+4=4v-36
= +V0V/-1 = V751 = 161
= +3i = +5v/3i r = —4+ 6

Generally, quadratic equations with complex solutions can be solved in the usual way using

completing the square o _the quadratic formula .

Example2 Determine the nature of the solutions of 22 = 22 — 5, then solve it.

2> -2 +5=0 = a=1, b=-2, c=5
A=(-22-41)5)=-16<0 = The solutions are complex conugates.

2 =20 +144=0

(r—1)* = —4
T —1=+V4/—1=42
r=1%+2i

2 Multiplicity will be discussed in more detail in the Polynomials chapter.
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Example3 For each equation, determine the nature of the solutions. Verify by solving.

—3x2+4r—2=0

@)+ =R
o 2(=3)
A= (4)?—4(-3)(-2)=-8<0
(2~ 4(-3)(~2) L
- =6
— TWo complex conugates solutions. =24
42% + 25 = 20w
A% — 20z + 25 =0
a=4, b=-20, ¢=25 x:—(—QO)i\@
2(4)
A = (=20)% —4(4)(25) =0 _ 20
8
— One real solufion. =3
322 + 62 =1
372+ 6xr —1=0
—(6) £ v48
0=3, b=6, c=—1 o —(6) £ V48
2(3)
A= (6)%—4(3)(=1) =48>0 _ —6£4V3
6
— Two real solutions. ——1+28
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4.3 Systems Involving Quadratic Equations

Quadratic-Linear Systems

Previously, we’ve worked with systems consisting of only |IV\60W 60]U0d'|0l/\9 . We now have
the tools necessary to solve systems when auadmﬂc GauaﬂOIﬂs are included as well.

The meaning of a SO|U1’IOI/\ to a quadratic-linear system is unchanged. A solution consists of

values for GOKCV\ Varlablﬁ which satisfy Gach GauahOﬂ simultaneously (at the same
time.) Because quadratics are involved, there may be 280 ,_ ON® or hNO real solutions.

As with ||ﬂ6ﬂr 5\/5{6‘“’\5 , the goal is to algebraically manipulate the system so that all
variables except one are €|IVV\IV\0d'6d , resulting in a 9|ﬂ@|@ unah()ﬂ , which can be

solved by the usual means.

Don'’t forget to_S0Ve for POTH variables

Example1 Solve the system. Example2 Solve the system to 2 decimal places.
y=22+6x—-33 (1) r+3y==6 (1)
y=3x—5 (2) y=22-5 (2
Equate y from each equation: Substitute (2) info (1)
2% + 62 — 33 =32 — 5 z+3(2* —5) =6
w2 +32x-28=0 32+ 2 —15=6
(x+7)(x—4)=0 322 +2—-21=0
oo T () £ VP —1B3)(-21)
r =
Subsfitute info (2) 2(3)

— —2.8177 oF 2.4843
y=3(-7)—5=-26 o
y=34)—-5="7 Cubstitute info (2):

y = (—2.8177)* — 5 =2.94

Solutions:  (—7,—26) and (4,7)
y = (2.4843)* — 5 = 1.17

Solufions: (—2.82,2.94) and (2.48,1.17)
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Example 3 Graphically find the solutions to
the system rH+y=4

y=—a*+6x—2
r+y=4

The curve for y = —a? + 6z — 2 is already Ll | |

T T T
plotted. 8 —6 —4 —9

Line = +y =4 lhas intercepts af (0,4)
ond (4,0). —4

Solufions: =z =1,y = 3
ond x =6,y =—2.

Example4 Determine the number of real solutions of the system
y=>5xr+11
y=—2>+2z+8

5r+11=—2"+22+8

22 +3x4+3=0
A = b — 4ac
= 3% — 4(1)(3)
=-3<0

— there are no real solutions.

Example5 Find k such that the system has exactly one solution.
y=-—z*+4z—4
y=kx—3 ‘
kr —3=—2"+4z—4  Equate y from gach equation.

2?4+ (k—4)r+1=0

A=0b—4ac=0 As we want one solution.
(k—4)?—-4=0
(k—4)* =4
k—4 =42
k=442
k=20 k=6
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Identifying Quadratics using Linear Systems

Suppose we know that a function f is quadratic, and that f(3) = 5. The function can be written

in standard form as

f(z) = ax® + bz +c
which, by substituting x = 3 and f(x) = 5, becomes the equation
9a +3b+c=5

Is it possible to identify f(z) from this equation?
No, because there is only one equation with tiree unknowns: o, b and c.

Recall that a system in ﬂﬂr% UV\kV\OWHS requires Jﬂﬂr@@ unaﬂOHS to be solvable.

A ouadrotic function can be ldentified if it has  kKnown values at
three points on the domain.

Example 6 Find the quadratic function f which satisfies f(3) =5, f(0) = —1 and f(4) = 15.

Let f(z) = az?® + bx + ¢, wWhich creates fhe system:

9a +3b+c=5
c=—1

16a +4b+c=15

{9a+3b15 {9a+3b6 (1)
Cc = —1 f— f—

16a 4+ 4b—1 =15 16a +4b=16 (2)
Mufipying () by -4 and (2) by %

—36a — 12b = —24
— 120 =24 — a =2
48a + 12b = 48

Substitufing into (1)

1I8+30=6 = 3b=—-12 = b= —4
— f(x) =22% —4x — 1
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44 Quadratic Regression

Recall that H’J@F@SSIOV\ is the process of fitting a modeling function to a set of data in order
to approximate the relationship between variables.

@uadmﬂc VGQFGSSIOV\ uses a qu&dmﬂc function for the model. It is typical to use

the Sfaﬂdﬂrd form of the function. In practice, this means choosing values for _Q | b and
C so that f(ﬂf) — Cl372 + bx -+ C_fits the data as well as possible.

The OO@WCWCICIBV\T O’F d@fGFVV\WWd'IOV\ has the same meaning as for linear regression: it is

a measure of how well the regression curve fits the data. For non-linear regression, RQ has no
relation to _ 71" .

Example1l A camera captures the flight of a ball after it is thrown. The frames are analyzed, and
the following data is recorded showing the horizontal distance, x, of the ball from where it was
thrown versus its vertical height above the ground, .

x (ft) \ 1.0 \ 3.0\ 5.0 \ 7.0 \ 9.0 \11.0
y (ft) \ 7.3 \ 9.6 \ 11.6 \ 13.4 \ 15.1 \ 16.3

Use quadratic regression to model the flight of the ball.
Using fechinology,
a = —0.0299,b = 1.2632, ¢ = 6.0631, R? = 0.9998

y = —0.0299z” + 1.2632z + 6.0631

Once technology is wused to perform a

FGQIYGSQOV\ , it is usually simple to use

the same technology to EIOT the modeling
function with the data, and perform further
calculations related to the function.

z (ft)
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Example2 Comment on how well the model fits the data.

The value of R which s close 10 1, suggests tne model is a very qood fit. This
ls supported by a visual inspection of the data and the model

Example3 Estimate the height of the ball after it has traveled 6.4 ft.

When = = 6.4, we have

y = —0.0299(6.4)% + 1.2632(6.4) + 6.0631
— 12.9ft

Example 4 Predict the maximum height of the ball, and the distance it will travel before hitting
the ground.

Using fechnology, the wodeling function has a verfex af (21.116,19.4) and an
x-infercept af (46.584,0).

Maximum height: 114 ft. Distonce travelled: 4bb 1.

Note that to answer the previous example, we had to use GXTm,VOMﬂOV\ , which may make
the prediction unreliable. In this case, physics predicts that a "projectile” (such as the ball in
the examples) has a parabolic path, which increases our confidence in our quadratic model, so the
predictions seem sensible.

But suppose that someone catches the ball before it hits the ground. Then our prediction of the

distance the ball will travel is incorrect. Always be careful using 6XJFm,VO|0d'IOV\ , as additional
information may be needed to accept or reject our predictions.
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5.1 Polynomial Concepts

A POI\/V\OW\IG' is an expression which, in standard form, can be written as

1
ap, X"+ ap_1x" "+ -+ a1z + ag

where

e n, and the following decreasing exponents, are IV\TGQIGFS greater than or equal to Z810 .

* Qp,dp_1,...,00 are OOfolCJIGVﬂ'S (real numbers!).
o ap #0.

The largest GXPOV\GN , n, is called the _O€AL  of the polynomial.

The T@H’V\S of a polynomial are the separate expressions of the form a;z?. The PONV\OW\IN
is the _ SUM _ of its T@FVV\S .
Example1l Write P(z) = 922 — 323 — 11 4 122 — 22 + 722 + 5 in standard form.

P(x) = 122° — 32° + 162 — 22 — 6

Naming Polynomials by Degree

degree name example
0 consfont 7
1 Inear 3z —9
2 quadrofic 5?4 9z
3 cublc —dz? —Te +1
4 quartic 122" — 822 + 11z
5 quintic —32° + 2

If the polynomial has a higher degree, it can be referred to as a Vﬂh‘d@@r% POI\/V\OW\IQl .
For example, 52° — 28 + 627 is a %—d@@ﬂ?f@ PONV\OW“N .

In general, mathematicians consider polynomials with coefficients of all sorts of number types. For us, they will
always be real.
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Naming Polynomials by Number of Terms

terms name example
1 monomial 53
2 binomil Sz + 6
3 trinomiol x° — 423 + 922

The name POI\/V\OW“N is a generalization of these names, with the prefix EOM- meaning
any number of terms fits the definition.

Example2 o' — 722 isa_JUArtic _binomial .

Adding and Subtracting Polynomials

To add or subtract polynomials, add or subtract the (\JO@’Fﬂ(\Jlﬁyﬂg of T@WV\S with matching

exponents.

Example3 Add 3z* + 722 — 922 +5 Example 4 Subtract 5z* — 322 + 42 — 11
and —8x% + 523 + 22 — 3. and 2% — 723 + 922 — 6.
(- 3at +72% —922 +5) (52t —32% 442 —11)
+ (—8z* 4523 +2x —3) — (2t =72% 4922 —6)
—5xt +1223 —92% 427 +2 da* +7x% —1222 +4x =5

Multiplying Polynomials

Polynomials are multiplied using the d|9’frlbuJﬂV6 'WO'VGFJF\II , which was covered in Sec. 3.3.

Example 5 Distribute (222 — 72)(2° + 323 — 922)

=

z°  4+0x* +3x3 —9x2

222 | 227 | 028 [+62° |-1824

—Tx =725 025 [-212%+-6323

(22 — Tz) (2 + 32° — 92%) = 227 — 720 + 62° — 392" + 6327
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5.2 Cubic Functions

Graphing polynomials becomes more difficult as their degree increases past two. An exception is

functions resulting from J(F(AV\SWCOFVV\OWOV\S applied to the 'Vaml/\)f OUbIC ﬁllﬂOﬂOV\ .

-5 -4 -3 =2

yl | | |

A | | |
fl@) 195 _64 —27 —8

T

parent function

flz) = a?

domain

R »fﬁffffrfAff:ff»ff

range | Lo S R

T T |
1 1 1
' ' '
R ‘ ‘ ‘
| | |

relation type

one-to-one

z-intercept

(0,0)

y-intercept VA'/
(0,0) 7‘

point of inflection

(0,0)

The graphs of cubic functions have a point of

lﬂﬂ@@hOﬂ , which is a point where the CurVere concave up
changes direction. POW' of inflection

In the case of the parent function f(z) = 23, the curve

changes from _CONCOVE dOWN  to _CONCOVE Up
at (0,0).

Note that while the parent cubic function is

OVWJ—TO-OM , this is not true of all cubic functions,
including the one shown in the diagram here.

concove down
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Graphing Cubic Functions Using Transformations

By applying meV\SfOFVV\OmOVNS to the cubic parent function, we get the form

f(.??) o A($ — hjg + k . Only a tiny subset of cubic functions can be written in this
form. A sketch of this type of cubic function should include:

shape of curve | CUDIC cUrve With enough poinfs o show strefeh/compression

point of inflection | (h, k), Using franslation of parent function o identify

x-intercept y =0, find 2 by 50|VW\@ f(x)=0

y-intercept =0, find y by 6V0k|u0m|ﬂ@ y = f(0)

endpoints evaluate the function at the bounds of the domain

Example1 Sketch f(z) = 3(z —3)% + 4.

Orientation: Upr@hf Point of Inflection: (3, 4)
z-intercept: (1,0)
Hz =3 +4=0

(x —3)° = —4

N[

(x —3)° = -8 1
r—3=vV-8=-2 = =1

y-intercept: (0, —9.5)
05 f(0)=3(—3)*+4=-95 _19-

endpoints: None, 0s domain s R J
Example2 Find the function g represented by the following graph.

Yy Point of inflection: (7, 25)
(2,50) 3
h=T7k=25 = g(x)=A(x —7)°+25
Other point: (2, 50)
7,25 .
.2 4(2) = (—5)3A + 25 = 50

—1254=25 = A=-i
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5.3 Special Cubics
a® + 3a’b + 3ab® +b* = (a + b)°
a® — 3a*b + 3ab® — b’ = (a — b)’
Proof
a +b
(a+b)* = (a+b)(a+0b)?
= (a+b)(a® + 2ab + b%) a® | @@ |+ab
= a(a® + 2ab + b*) + b(a® + 2ab + b*)
= a® + 2a°b + ab® + a*b + 2ab?® + b* +2ab [+2a?bl+2ab?
= a’ + 3a’b + 3ab” + b’
2 2 3
Replace b with —b fo obluin #e second result I R

Theorem: Sums and Differences of Cubes

a* +b* = (a +b)(a® — ab + b*)

a® — b = (a —b)(a® + ab+ V?)

Proof a +b
(a +b)(a® — ab+ b?)
2 3 2
a(a® — ab + b*) + b(a* — ab + b*) a a ab
= a’ —a’b +ab” +a’b —ab” + b’
R —ab | —a®b| —ab?

Replace b with —b fo obfain the second result [ 4b? | +ab? | +b3

84
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As with the special quadratics in section 3.4, we can use these rules to quickly d|5jfrlbUJf6 and
‘Fao‘for certain expressions.

Example1 Distribute (z —5)3 Example2 Distribute (z + 4)(2? — 4z + 16)
Using a =z and b =5, Using a =z ond b = 4,
(x —5)% = 2® — 1522 + Tha — 125 (z +4)(2* — 4z + 16) = 2° 4 64

Example3 Distribute (3z + 7)3
Using a =3z and b=,

Bz + 7P =32 +3-32- 722 +3-3- T2+ 7°
= 2723 + 18922 + 441x + 343

Example4 Factor 23 — 1331 Example5 Factor 2% + 1222 + 48z + 64
Using a =z and b = 11, Using a =z and b = 4,

2? — 1331 = (v — 11)(2* — 11z + 121)  2° 4+ 122 + 48z + 64 = (v + 4)°

Example 6 Factor 729z — 512
USW\@ a=9z and b=S§,
7292° — 512 = (92 — 8)(81x* + 72z + 64)

Some expressions can be factored by combining these rules with others we’ve already learned.

Example7 Factor 22% — 145822

22° — 145827 = 22%(2% — 729) using GCF
= 22%(a* — 272) where a =
= 22%(a — 27)(a + 27) Using difference of squares
= 22%(2% — 27) (2 + 27)
= 22%(x — 3)(2* + 32 + 9) (v + 3)(2* — 3z +9)

using diff. and sum of cubes
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5.4 Polynomial Division

Recall from elementary school, before you learned decimals and fractions, that lelSlOV\ of
I/\TGQIGFS results in a YGVV\OHMGF when the leHOﬂ isn’t exact.

Example 1

19+-7=2K5 because 19=7-2+5
3+-8=4K 3 because 35 =8-4+3
11=5HKS8 because 63 =11-5+8

Note that the FGVV\aW\dﬁr will always be smaller than the lelSOr . The part of the result

which is not the remainder is called the QUOhGVﬂ' .
POI\/V\OMIQ'S , as it turns out, are d|V|d6d in a manner very similar to IV\JFGQ(’JFS 2

Example2 Verify that when P(z) = 2* — 23 — 1322 + 282 — 9 is divided by = — 3, the quotient is
Q(z) = 23 + 22? — 7z + 7 and the remainder is 12.

(z—3)-Q(z)+ 12 = (z — 3) (2 + 222 — Tz +7) + 12
— 2t — 23 — 1322 4+ 282 — 21 + 12
=2t — 2% — 1322 + 282 -9
= P(z), 05 required

3 42?2 —Tx  +7

x xd | 4223 =722 +Tx

-3 —3:133 —61’2 +21x| —21

The goal of POI\/V\OW\IQ' d|V|SIOV\ is to find the QUOhGN and the F@W\allﬂd@r . There

are several methods that can be used, but we will use a variation of the bOX M@H(]Od as we
are already familiar with it.

2This isn’t just a coincidence as it seems to be. Mathematicians actually consider the set of integers and the set
of polynomials to have the same underlying algebraic structure.
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In the _ﬁnal result, the lelSOF is placed along the left—hz_md side of the box grid, and the
QUOh@N is placed along the top. The original POI\/V\OW\IQ' is mostly contained within the

grid, but won’t fit perfectly if there is a FGVV\allﬂd’&r .

Step 1: Construct the box grid with the diViSOY along the

left=hand side :

Step 2: Place the ﬁré»’f T@FW\ of the original polynomial in
the _fop-left cell .

Step 3: Remembering that the usual VV\u|ﬂ'V|IGa1'IOV\ rules

for the box method apply, complete the entry abOVG the
last entry.

Step 4: Use VV\uH'I,VhC/aﬂOV\ to complete the column.

Step 5: Complete the next cell in the ‘fOE FOW _ so that

its diﬂgl@ﬂm completes the V\@XT Tﬁrw\ in the original ’

polynomial.

Step 6: Repeat steps 3 to 5 until the bOX @Hd is

complete . ®

Step 6: _Add 0 reMainder  so that the _CONSTAINt P
JFGYVV\ of the polynomial is complete.

Example3 Divide P(z) = 23 — 222 — 212 + 7 by x + 4.

v he AR P(z) = (z +4)(z® — 62 +3) — 5
v |3 || 432 | =5 or equivalentty
P(z) 2
+4 | 4da? | —242| 12 oA U vy
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Example4 Divide P(z) = 423 — 622 + 8 by x — 2.

422 +2x +4 R P(:C) _ (CL - 2)(4%2 42 + 4) 116
v | ag3 |92 | 442 | +16 or equivalently
P(x) 2

Example5 Divide z* 4 22 — 1722 — 422 — 66 by z° + 3z + 4.

Let P(x) = 2t + 23 — 172% — 422 — 66
gj2 —2x —15

22 | 2t | =223 |-152+1lx  P(x) = (2°+3x+4)(2* —22—15)+ 112 —6

or equivalently

P(x) ) 11z — 6
——— =1 —2r - 16+ —F——
14 | 4422 =8z | —60 x° 4+ 3r + 4 x? 4+ 3x +4

+3x | +323 | —622|—45x| —6

The Remainder Theorem

Recall that in integer division, the F@VV\GIV\dGF is always less than the d|V|§OF .

A related idea for polynomials is described by the following theorem.

In _polynomial division , if there is a _reimainder , its _deqree is always
less than the _6ree of the _dVIsor .

If the dViSOr is _lIN@ar , then the reMmainder must be a _constant .

We can easily confirm that this is true for the examples above. In the particular case of a linear
divisor, the following theorem is very important:
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The Remainder Theorem

Suppose a 'VO|\'/|/\OVV\i0k| , P(x), is _dVided
by a _lInear_binomial , = — a.

Then the _remainder is equal to P(a).

Proof

Let Q(z) be the quotient, and let R be the remainder.
P(z) = (v —a) - Q@)+ R
Pla) = (a—a)-Qa) + R

= 0-Qfa] + R

Example 6 Confirm the remainder from example 3, dividing P(z) = 2% — 222 — 212 +7 by z + 4.

P(—4) = (—4)° = 2(—4)> = 21(-4) + 7= =5

Example7 Confirm the remainder from example 4, dividing P(x) = 42® — 622 4 8 by = — 2.
P(2) = 4(2) — 6(2)* + 8 = 16

If the linear divisor is not _MONIC , then we can use this updated version of the theorem.

Generalized Remainder Theorem

Suppose a 'VOI\'IV\OVV\W , P(x), is dvided by a inear binomial
which equals _ZI0  when = = a.

Then the _remainder is equal to P(a).

Example 8 Suppose P(r) = 2x% — 22 + ka + 27 is divided by 2z — 3, and the remainder is 9.
Find the value of k.

20 —3=0 when z =3

an ‘ 2 .

PR =2’ - @ +h(@ -+
| =3k+%=9
1=
k=—15
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5.5 Factoring Polynomials

Suppose that a ,VO|\'/V\OVV\|Q| P(z) is divided by a particular leISOF T — a, and that the
result is a QUOhGVﬂ' Q(z) with _N0 VBVV\(AIMGF . This means we can write the statement

which means that x —a is a WCGOTOIF of P(x).

The following is a special case of the IZGVV\OHMGT —W]@OFGVV\ , when there is
no remainder .

The Factor Theorem

z—aisa fOCI0C_ of the IVO|\,II/\OW\U| P(z)
iff (if and only if) P(a) = 0.

This suggests a method we can use to WCO\OTOF the polynomial P(x):

Step 1: Find a value a for which P(a) = 0, which means z —a is a {;a(‘ffor .

Step 2: D|V|d€/ P(z) by = — a.
Step 3: Continue by WC(AOTOFIV\QI the resulting QUOh@N .

Example1l Factor P(x) = 23 — 21x + 20.

By frying different values of P(a), we gef
P(1)=(1)*-21(1)+20=0

— z—1Is a fachr. z | 23 | 422 |-20x

P(z) = 2° — 212 4+ 20
= (z — 1)(2* + 2 — 20) —1 | —a? | —2 | +20

=(z—1)(z —4)(x+5)
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Example2 Solve 223 — 722 — 82 +28 =0

2 _ _
Let P(x) = 223 — 72> — 8x + 28 2 seo

P(2) =2(2)* —7(2)2 —8(2) +28 = 0

€T 203 | =322 —14x
— 1 —2 I a factor.

P(z) = 2% — 72* — 8z + 28 —2 |—42?| +6x | +28
= (r —2)(22% — 3z — 14)
=(x—2)2zx —7)(x +2) T 42
=0
2
T—2=00 20 —T7T=00 2+2=0 2z | 227 | +dw
=20 z==%0 x=-2
—7 | =Tz | —14
Example3 Factor P(z) = 2°—5z* —2523 46522 4842
P(x) = 2° — 5% — 2523 + 6527 + 84z
3 2 _ _
= x(fr4 — b — 252% + 657 + 84) z? 227 -3l =28
Q(z)
x z* | 223 |-312% 282
Q(3) = (3)*—5(3)3—25(3)2+65(3)+84 = 0
— 2 —3 s a factor of Q(x). 3 | _503| r6u2 | 1932 | 184
P(zx) = 2Q(x)
= z(r — 3)(\.%3 — 227 — 31z — 28)
R(x) 72 —3xr =28
R(—1) = (=1)3-2(=1)2—31(=1)—28 = 0
. 3 | a2
— z+1 s a factor of R(z). R 317 | =287
P(z) = z(x — 3)R(x) +1 | 422 | =32 | —28

z(z — 3)(x 4+ 1)(z* — 3z — 28)
2z =3)(z + 1)(x = 7)(x +4)
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5.6 Graphs of Polynomial Functions

Recall that a polynomial is a type of GXW@SSIOV\ . If it is treated as a function, then it is
called a_p0lNOMial function .

When 0&V\0k|\IIZIV\@ the graphs of polynomial functions, we’ll need to think about how the
function b@V\ON@S in two different ways:

. |OGa||y , which means we only consider the immediate vicinity (close to) the EO|N
we're interested in; and

. gl'ObQ"y , which means we consider the function over its entire dOVV\OHIﬂ .

Zeros, x-Intercepts and Multiplicity

For a polynomial function, as with all functions, the X—IV\TGFO(’JPJFS of its graph correspond to
the Z8I0S  of the function, which are the IV\EUT values which cause the OU*EU"’ values

to equal zero.

Example1 Find the zeros of f(x) = (x+1)?(x — 1)3(z — 2), and find the z-intercepts of its graph.
fle)=0 = z=—-10o0rz=10 =2
Zeros ore -l | and 2. x-infercepts are (-10), (10), (Z0)

How many zeros are there in this example? If we count them, the simple answer is Thr% Cf

we’re being more precise, we would say this is the number of |9hﬂ01' Z€ros.

But that’s not the only way to count. Note that 1is a _Z8F0  because (x —1) is a faCJFOF of

the polynomial. But it’s not a fa(‘ffOF just once, but ﬂf\r% times. So we can say that 1 is
a_Zer0 With MUIZICHY 2 . when we count the _Z805  with _MUTIZICHY , there

are SIX_.

If a zero has VV\UI‘h'VhOlT\/ 1 2 3
the function behaves |OCQ" like it is inear quadmﬁo cuble
simple point of
he 7-i ; : Vertex - :
and the z-intercept is a lVﬂ'@VOGP 1, i in e Oh on

The \/‘Wﬂ%ﬂ)@?* is found as in any function, at the point (O, f(()ﬂ .
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T Yy r Example?2 Identify the zeros and their multiplicity of the
polynomial function f shown in the graph.

(—1,0) is a verfex.

2 — x=—1 15 a zero with mulfiplicity 2.
(1,0) Is a point of inflection.
¥ ~T— =1 1I5 a zero with mufiplcity 3.

(2,0) 5 a simgle Infercept.

— x =215 a zero with multiplicity |
Note that this is e same function as in example |

Positive and Negative Intervals

A 'VOSITIVB IV\JFGTVOKI is an interval of the domain on which the value of the function is

EOSH’IV@ , and its graph is abOVG the z-axis.

A ﬂ@@&h\/@ IVT|'6FVO£| is an interval of the domain on which the value of the function is

V\@gl&hV@ , and its graph is b@'OW the z-axis.

Keep in mind that a function’s value is 7810 at its zeros (by definition), and so is neither

posive o _Neqative .

If a polynomial function changes Slgm , it will be at a Z810 , but not every 7810 causes

a change in Slg“ﬂ .

Example3 Identify the positive and negative intervals for

the polynomial function f shown in the graph.

fis - on the interval

(—00, —1) U (=1,1) U (2, 00)

f is ‘megative on the interval
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Minima and Maxima

A |OC/a| MAXIMUM  of a function is a point at which the function has a greater value than

any points nearby. A |O()0k| MINIMUM_ of a function is a point at which the function has
a lesser value than any nearby points nearby. For polynomial functions, these points occur at

verfices .

The @|Oba| MOXIMUM _ of a function is the point at which the function has a greater value than
at GVGW other point in the domain. If it exists, it corresponds with either a

IOO(Al W\QXlW\UVV\ or an 6ﬂdPO|N . Similarly, the @|Oba| VV\IV\IVV\UVV\ has a value less
than every other point and, if it exists, corresponds with a |O(\Ja| MINIMUM _ or an GﬂdPOWﬁ .

T y r Example 4 Identify the (approximate) local and global
maxima and minima for the polynomial function f shown

in the graph.

f has o IR 2t (—0.28, 4.45)

and has no global maximum.

f has IS CRINMN0G] 2t (—1,0), (1.78, —0.81)

and has its global minimum af (1.78, —0.81).

Domain and Range

Polynomials can be evaluated for every real number, so the IVV\E“@d domain of a polynomial

function is IR . Tfa graph shows GﬂdIVOIVﬂ'S , however, the domain has been FGSJWIC:T@d .

Knowing the global Maximum and/or Minimum , if they exist, will typically allow us to

find the mmge .

Example 5 State the range of the function above.

(—0.81, 00)
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Increasing and Decreasing
f is said to be imr@aSiV\@ if f(z) increases as z increases, which implies EOSiﬁV@ slope.
f is said to be d@(‘f@ﬂﬂﬂ@ if f(x) decreases as x increases, which implies V\@gl@hV@ slope.

Example 6 Identify the increasing and decreasing

intervals for the polynomial function f shown in the graph.

fis _ on the interval

(—1,—0.28) U (1.78, o0)

fis _ on the interval

(—o00, —1) U (—0.28,1.78)

(1.78,—0.81)

Example7 Find a polynomial function g to fit the following graph.

y The zeros of the function are
o 1 with multiplicity 2
5 « b with mulfiplcity |
So a conddote for the function is
(4,1) y = (x—2)*(x—5)
but f 2 =0, then y = (—2)%(—5) = —20,
which doesnt mafch the y-infercept:

We can use a reflection and compression fo
change the y-intercept witihout” changing the
X-Infercepts.

— ]

1

go(x) = —4(z = 2w = 5)

Technology can be used 1o verify that this is
the correct function.
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6.1 Simplifying Rational Expressions

Recall that a mﬁOI/Wd V\UVV\IOGF is a number which can be written in the form of a fraction,
where the IﬂUVV\@mTOF and d@V\OVV\W\Od'OF are both IV\JFGQI(EJYS )

Examples Non-examples
5 2 _ 7
o ; i V1l v/ 14 ' /19
0.75 = 3 V25 =2 " '

Similarly, a mﬂOV\a| GXVFGSSIOH is an expression which can be written in the form of a
fraction, where the _/UMEITHOF  and _deINOMINATOF  are both _ZONNOMIOIS .

Examples Non-examples
1 x+3 3+ 222 —4xr+5 x—7 27+ 5 r+1
xr x—4 222 — 3x + 2 VT r—2 logy ()

Also recall that any WCGOTOF (with a key exception) divided by |+§@|‘F is equal to 1 . You
should be familiar with using this property to SWV\'V“‘F\/ fraCﬂOlf\S .

c , 9 33 3 50 5-10 5
xamples -—= — == — = ==

6 2-3 2 60 6-10 6
We can use the same property to SWV\'V“’F\'/ mﬂOV\OH GX'W@SSIOVNS .
Example1 Simplify W

r—5
(@ +2e—5 _
r—"35

However, if the value being divided by itself is 280 , then the expression cannot be SIVV\Elhcl@d
like this. Our example has this issue when _ U = D . If this is the case, the original expression

and the simplified version are not 65!U|VQ|GN .

When = = 5, (z + 2)(2_ 5) ls undefined, but x +2 =7.

x‘_

The solution to this problem is to GXGIUdﬁ L = 9O from our simplification. We call this an
6X(}|Ud6d V0k|U6 , and we write the result as

(x+2)(z —5)
r—9

=x+ 2, T #5
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Example2 Simplify:
12¢0°  4-3-2° -2
3x 3z
= 4

Example 4 Simplify:
14—z  (2+x)(2—2)
2+zx—-6 (v—2)(z+3)

6.1 Simplifying Rational Expressions

Example3 Simplify:

(@ —5)z+3)(—6) 25

(z—6)(z+3)(x+5) x+5
x #6,—3

Example5 Simplify:
23+ 125
x3 4+ 1522 + 75z + 125

-2+ a)(z—2) _ (z+5)(a® — bz + 25)
- (x—2)(x 4+ 3) (:L’—I—E))z2
2 2 _
_ _9C+ ey T Sr + 25
r—+3 (x 4+ 5)?
An Error to Avoid

Remember that only faCTOFS can be eliminated by dividing, not T@FVV\S . With an expression
like the one in example 4, a common error is to do the following.

A +50+6  50+6
Ztr—6 -6

This is because the IV\VBFSG operation of division is VV\UH'I'V“(‘MTIOV\ , not addmOl’\ or
subtraction .

Don’t do this:

Seriously, PO NOT DO THS!

Multiplying and Dividing Rational Expressions

Recall that fractions can be vvxulﬁgliad by multiplying the NUMEITGIOIS  and multiplying

the _dRNOMINATONS .

3 11 3-11 33 11

56 5.6 30 10

Also, recall that dividiﬂg by a fraction is the same as multiplying by its reciproom .
4.8 49 36 9

Example - = = — = —
79 7T 8 56 14
Note that in these examples, some simplifying could have been done at the start.

3 11 1 11 11 4 .8 49 19 9
5 6 5 2 10 7°9 7 8 7 2 14

Example

)
2
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The same methods can be used to VV\UHW'VI\II and d'Vld@ rational expressions. It is always a
good idea to WCOKOTOF and SIVV\'VH‘F\/ whenever possible.
Example 6 Simplify:

22— 21— 8 t+3  (r—4)(z+2) z+3
T+ 3 22 +4r —32 +3 (z—4)(z +8)
x4 2
= 4, -3
r+8 74

Example7 Simplify:

2+ 120435 224 9zx+14 (2 +7)(z+5) (v+7)(z+2)

322 +x — 10 T +5 (3x — 5)(x-2) x5
(z +7)*
- 5, -2
3¢ —5 T7 =5

Example 8 Simplify:

224+ Tx — 30
x—4

(x — i)(_x4+ 10) - [({g — 4) (SC + 10)]

:(35—3)@%/1’07' 1
r—4 (x —4)(z4+-10)

= (2% + 62 — 40) =

=3 1
-4 x—4
r—3
- 10
= 7
Example9 Simplify:
:U2+7x—|—10;a:2—|—6x—|—5_(:L’~|—2)(x—|—5);(x+5)(x+1)
2—2-6 "~ x2+z-12 (z+2)(z—-3)  (z-3)(z+4)
(z+2)(a+5] (—3)(x +4)
(z+2)(z—3) (z+5)(z+1)
x+4
- 5, —4, 2
;U—’—l x# 57 Y 73

In the last example, there’s an extra 6XC|Ud@_d VQlU@ at —4. The factor _ L + 4 s
not elimipated, but it is originally in a d@IﬂOVV\lV\aTOY . If x = —4, the original expression is
undefined .
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6.2 Adding and Subtracting Rational Expressions

Recall that ‘Frao‘hOV\S can be add@d or SUb‘iTaCT@d if they have the same d@lﬂOVV\W\Od'OF .

Examples
2+7_4+7_11 3 1.9 2 7
5 10 10 10 10 4 6 12 12 12

Similarly, mJﬂOVW expressions can be addﬁd or SUb“Ta(\ffﬁd if they have the same
denominator

Example1 Simplify:

% + 8z 10x + 24 _:1:2—2x—24
224+ Tr+12 24T +12 224+ T7r+12
(@ 6ty
(z+4)(x + 3)
r—06
- 4
x+3 7
Example2 Simplify:
r—12 4x+15 x(r—12) 4r+15
r—3 22-3z z(r—3) 22—3w
_$2—12x 4o + 15
a2 —3x  a2-—3x
_:1:2—8x+15
22— 3z
:M(x—@
x(r—3)
-5
. x # 3
T

Finding the Lowest Common Multiple

The |OW€5+ common W\UHTM@ of two (or more) expressions is the SWV\E'@g‘i’ expression
which is a W\UIhEI@ of each given expression.

To find the LCM , find the simpliest VV\UHIEhGF for each expression so that each has the

same EFOQUOT , which is the LCM .

© 2020 Shaun Carter v. 0.3 101



Chapter 6 Rational Expressions and Functions

Example3 Find the lowest common multiple
of 5z, 1022y and 15y3.

5z - 6y’
1Ox2y . 3;1/2
1517 - 22
LCM = 302%y*

Example5 Find the lowest common multiple
of x(z —2) and (z — 2)(x + 5).

x(r —2) (x+5)

(x —=2)(x+5)-x
LM = z(z — 2)(x + 5)

Algebra 2 Notes

Example 4 Find the lowest common multiple

of (xr —6)% and (z — 6)(x + 8).
(x — 6)2 (z +8)
(x—6)(x+8) - (x —6)
LOM = (2 — 6)2(x + 8)

Example6 Find the lowest common multiple
of 22 + 9z 4 20 and 22 — 2z — 35.

(x+4)(x+5) (x—7)

(x=T)(x+5) (x+4)
LM = (2 +4)(z +5)(z — 7)

Adding or Subtracting with Different Denominators

If the dGIﬂOW\W\Oﬁ'OFS are different, we look to find the LCM of the d@V\OVV\IV\Od'OYS ,

and make that the _COMMON_denominator

It is best practice to sim ||JE
expression can simplify further.

Example7 Simplify:

and _TOCTOr  the resulting _NUMEIafOr

, in case the

r 4 zx+4) 0 4@+
z+1 z+4 (z+D(x+4) (z+7)(z+1)
22 + 4o dx + 4
T @+ )@+4) (@ta)(z+1)
B x? —4
(@ 1)(r+4)
:(x+2)(aj—2)
(z+1)(z +4)

102
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Example 8 Simplify:
5) x 5 x

:1:2+9x+14+x2—|—6:1:—|—8: (x4 2)(x+7) +(x—|—2)(x—|—4)
5(z +4) z(r+7)

@+ 2+ +4)  (z+2)(@+4)(r+7)
B Sx + 20 t+ Tx
e R T E )
B 2 + 122 + 20
(e +2) (@ +T)(z+4)
B (z+2)(x + 10)

(z42)(x + 7)(z+4)
_ x + 10 v -2

(x+7)(x+4)

Example9 Simplify:
x B 9 B x B 9
2—2-6 22492-36 (v—3)(z+2) (v+12)(z—3)

z(r + 12) 9(z +2)

T @-3)a+2)x+12) (z+12)(xz—3)(z+2)
22 + 12z 9 + 18

(=32 +2)(x+12)  (v+12)(z—3)(z +2)

B 2?4 3x — 18
(z —3)(x + 2)(z + 12)

_ —3+0)
(z—=3)(z + 2)(z + 12)

r+6

“ Gt 12 v#3
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6.3 Complex Fractions

We’ve already learned that a rational expression is a fraction with polynomials for the numerator
and denominator.

If the numerator and denominator of a fraction are mJﬂOV\al GXVFGSSIOHS themselves, the
fraction is a (‘JOW\P'@X fra(‘/ﬂOV\ . These expressions are complicated, as their name suggests!,

so it is desirable to SWV\E'hCy them as much as possible.

If the numerator and denominator each contain only a 5|V\@1|6 1°mC:1'IOV\ , then the complex

fraction is simply just lelSlOﬂ of two rational expressions, written in a different form. This
means they can be treated in the exact same way, by W\UHTM\/W\@ by the FG(‘JlIVrOGal of

the _dIVISOr .

Example1 Simplify:

T

28 .43 41

z+1 L L

(x+3)(x+1)

If a complex fraction contains a SUM  or drﬁcﬁrﬁﬂ(‘/@ of rational expressions, then there

are a couple of options to SIVV\EIHCy them.

Method 1: Multiply by Denominators

In this method, we eliminate the d@V\OVV\IV\aTOFS of the smaller fractions by W\Ulhpl\/%@
everything by their fa(‘ﬂ'ors .
Example 2 Simplify:

1 2 1 2 2x
T z+5 _ w x+w+5 x_1+w+5
o z B x?
T+5 T+5 L z+5

L-(z+5)+ 75 (2 +5)  a+5+2
2 (z+5) ?

T+5

3r+5
=— x # =5

X

!The name “complex fractions” does not imply they are related to complex numbers. If you want a less confusing
name, you could call them “nested fractions.”
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6.3 Complex Fractions

Method 2: Adding and Subtracting First

In this method, we simplify the V\UVV\GWTOY and/or the d@ﬂOW\imTOT as we would for

any expression with addition or subtraction. Then treat the result as leBlOﬂ .

Example3 Simplify:

T+5 2x 3x+5
st o5 _ 5o T @k _ awid)
3z +5 -+
I
3 5
Example 4 Simplify:
Using Method 1:
=7 2 x=T7 2
7= T 753 @3 w43
5 _ xz+6 5 z+6
x—3 x2-9 x—3 (x+3)(x—3)
- ey (@ +3)+ 5 (2 +3) ~ =7+ 2
3 (@ +3) - (m+§)+(.?:—3) -z +3) ‘)ﬁfé‘r’ - ;_tg
B = (r—=3)+2-(v—3) oz —T+422-6
M (p—3) - (2 —3) Sr+15—x—6
3r — 13
_ -3,3
4 +9 v7 =3
Using Method 2:
=7 2 x—7 2
=9 T 13 w3 o3
5  z+6 5 z+6
x—3 x2-9 x—3 (x+3)(x—3)
7 2(z—3) 7 226
@D T @ed | @3E3 T @ed)
~ 5(z+3) 46  _ bax+15 z+6
(2—3)(x+3)  (z+3)(x—3) (2=3)(z+3)  (z+3)(z—3)
3x—13
@13 (z—3) 3dr — 13
= T =T v # 3.3
@13)(@—3) T+

© 2020 Shaun Carter v. 0.3
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6.4 Rational Equations

An equation which consists of raﬂOV\Od 6XPF655IOV\S is called a rahOﬂal ﬁquah()ﬂ .
As with any equation, 90|V"ﬂg| means finding the values for the Varlabki which make the
equation WU@ .

To simplify the equation, we can eliminate the d@V\OVV\lmTOYS by multiplying the entire
equation by their WCQGTOFS This reduces the equation to a VO'VMOM|Q| equation, which is

frequently a Quadraho equation. We can then use our typical methods to finish solving.

Example 1 Solvex+2—x+9:1
T —2 T
T+ 2 z+9
(x—2) — (r—2)=1-(z—2
- - -2 =1 - 2)
2
—1
x+2_:v+7x 8:%_2
x
24 7 — 18
(a:—|—2)-:17—x R r=(x—2)x
T

2?42 —a? —Tr+18 =2 — 2z
—2* — 32+ 18 =0
2% 432 — 18 =0
(x+6)(r—3)=0

r=—60 =3

We can check that both solutions are Vahd by BUbSJﬂquJﬂV\@] them into the original equation.

it 2= —6, then LHézgj@j?—( 9 — 43—, RHG =1,
f x =3, then LHS = )——(3)—“’:%—12:1, RHS = 1.

In this case, both of the solutions Sahéﬂl the equation. This is not always true, which is why
we need to check the solutions.

106 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 6.4 Rational Equations

For rational equations, it is possible to obtain GX‘WQH@OUS solutions. EXTMV\BOUS

solutions, which are not actually solutions, appear when the equation is solved, but are

IﬂOOﬂSISfGV\T with the original equation.

-3 2 5
Example 2 Solvei+3+x_2=x2+i_6
r—3 2 b
A 3 _ 3 —= xr 3
e s A (z+3)(z —2) o
3+2:E+6 T
T — f—
T — 2 r—2
2r+ 6 3%y
-3 (-2 (x—2) = (T —2
(#-3) (¢t =D+ ——5 (t-2) = —5 (¢ ~2)

2> —br+6+2x+6 =5z
22 —8r4+12=0
(x—=2)(x—6)=0

=20 =06

Checking the solutions:

(2)-3 2 ' _ _ 52 i '
f z=2 then LHS = o tms b Undefined, RHS = s S undefined.

(6)—3 2 _1,1_5 __ 56 _5
hcl’—6ﬂﬂ@V\LHg—ﬁ—f—m)—iQ—g—Fﬁ—g,KHg—m—g.

— z =2 s an extraneous solution, = =6 is the only solution.

Because extraneous solutions can arise from rational equations, you must a|V\Ia\/§ (‘Jh@(‘/k
your solutions with the original equation.
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6.5 Simple Rational Functions

The simplest non-trivial rational function is the FGOIVrocal ‘FUV\G‘hOV\ .

. ) —4 -3 —2 -1 0 1 2 3 4 5
parent function ¢ } } } } } } } } } b
1 f(z) 1 _1 _1 _1 —1 undef 1] 1 1 1 1
f (UU) _ LL’fl —— 4 3 2 2 3 4 5
s
domain
R\ {0}
range

R\ {0}

relation type

one-fo-one

horizontal asymptote

y=20

vertical asymptote

rz=0

shape

nyperbola

An QS\/W\IVTO*@ is a line which a function’s curve continues to get 0|O§6F to, without ever

reaching is.

This function has a V\OHZON&I GS\IIVV\'VfOTG at _UY — O , because as x IV\GFGQSGS
towards 400 or dﬁcrﬁaéﬁs towards —oo, f(x) continues to get CIOSGF to zero.

As x — too, f(z) — 0

The function also has a V@H’l(b&ﬂ QS\I/VV\'VTOTG at _ =0 , because as = gets C|OS€F
to zero, f(z) continues to _NOICASE  +o0 or d@GF@QS@ to —oo.

Asxz — 0, f(x) = +oo
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6.5 Simple Rational Functions

Transformations of the Reciprocal Function

By applying melﬂéforv\/\ahom toy = é, we arrive at the @6V\6m| fOHM

A
r—h

flz) = +k

A sketch of this type of function should include:

shape of curve

nyperbola with enough poinfs 1o show stretehn/compression

z-intercept

y =0, fid z by soving f(z) =0, exists f k # 0

y-intercept

=0 find y by evauating y = £(0), exists ¥ h #0

vertical asymptote

x=nh, 05 f(h) s undefined

horizontal asymptote

y==Fk 0s f(x)=Fk has no solution

endpoints

evoluate the function at the bounds of the domain

The points one unit left and right of the vertical asymptote are useful for guiding the overall shape

of the graph.

1

Example1 Sketch a graph of f(z) = _—3 — 5, and state its domain and range in three forms.
Tz —

Orientation: lIﬂV@H’@d

Asymptotes: © = 3
x-intercept: (%, 0)

—1 o
L 5=0

x

7_13_4)

Other points: f(2) =

y-intercept:

Domain:

R\ {3}
- (_007 3) U (37

={z : z#3}

© 2020 Shaun Carter v. 0.3

y=—>
o f(0) = 1
4 () =-6
Range:
R\ {5}
00) = (—00, —=5) U (=5, 00)
={y : y# -5}
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Example2 Find the function g represented by the following graph.

v=-1:11v asymptotes: = —1 and y = —3
. — h=-1,k=-3
5 g(z) = 75 —3

posses frough origin: g(0) = 0
4-3=0 = A=3

Inverses of Simple Rational Functions

Functions of the form y = ﬁ + k are OV\@"TO"OV\@ , which means they each have an

Inverse  fUNCtion . 1¢ tums out that the _IWEISE  fUNCHONS  have the
SoMe 1°OFVV\ . Finding INVEXSES — follows the same process we used in section 2.2.

1
Example3 Find the inverse of f(z) = p— +7. State the domain and range of f, and the domain

and range of f~1.

y=_—5+7 domain of f =R\ {2}
SWap x <y : x:y—i2—|—7 mn@eoff:R\W}
1
(z—T)(y—2)=1 domain of f~1 =R\ {7}
y—Q:xi7 rnge of f~' =R\ {2}
y:xi7+2
1
-1 o
f (:L’)—x_7+2

110 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 6.5 Simple Rational Functions

Linear Rational Functions

A rational function whose numerator and denominator are both ||lﬂ€ar has a hypﬁrbom
for its graph, just like y = ﬁ + k, though determining its characteristics is more difficult. To

handle these functions, we can use POI\/V\OW\IQ' d|V|5|Oﬂ (section 5.4) to convert their form.

3z +8
Example4 Write f(z) = m:2 in the form y = ﬁ + k, and sketch its graph.
x

You can use the known values f(0) =4 and f(—%) = 0.

: T
3$+8 2 8 :
f<$)_:c+2_ x+2 o
2 |
— 3 .
(L‘—i—2+ '
Example5 Write g(x)zw;f(i+7in the formy:Zjiz.
—2
) — 7
g9(r) = —+
—2 T(x —6
2 10
r—0 r—0
_—2—{—71’—42
N r—06
_7:(:—44
-6
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6.6 Functions with Quadratic Denominators

Transformations of x2

parent function

1

flx)=a27?%= o)

domain

R\ {0}

range

(0,00)

relation type

many-to-one

horizontal asymptote

y=20

vertical asymptote

rx=20

shape

fruncus

This parent function is similar to the r60|PrOOG| function. It has the same dOVMlIﬂ , and
its graph has the same ag\'/W\P‘i’O‘i’@S . However, because x is Squarﬁd , the output values
are all 09|hV6 , which changes the mﬂglﬁ .

Note that the shape of a curve is not a V]\/,VGFIOOM , but is a slightly different shape called a
truncus

By applying mewaOFVV\aﬂOIAS , we arrive at the @6V\6F0&| WCOFVV\

A
f($>:m+k
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A sketch of this type of function should include:

shape of curve | fruncus with enough points o show streteh/compression

r-intercepts y =0, find = |9\/ 50|Vi|ﬂ@ f(x)=0

y-intercept =0 find y by evauating y = £(0), exists ¥ h #0
vertical asymptote | x = h, 05 f(h) s undefined

horizontal asymptote | y = k, 05 f(z) =k hos no solution
endpoints evaluate the function af the bounds of the domain

Example1 Sketch a graph of f(z) =

(z—7)
Asymptotes: © =7 y=—4
(

r-intercept: (1—21,0) ond 177,0)
9 _
o T 4=0
9 _
e =4
(x—17)"=1
r—T7= :i:%
r="7T% %
y-intercept: ( ,—%)

05 f(0) = -1 ~ —3.816

Other points: f(6) =5 f(8)=5

Example2 Find the rule for a rational function f with an implied domain of (—oo, —2) U (-2, c0)
and a range of (—o0,8). The function does not represent a stretch or compression applied to the
parent function.

No sfrefch or compression —> A = +1.
f(x) <8 = grapgh is nverfed — A s negative — A= —1

Aoymptotes are o= -2 and y =8 — h=-2 and k=38

—1
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Reciprocals of Quadratic Functions

1 .
Functions of the form f(z) = @, where ¢(z) is a Quadmﬂc function, can be graphed by

examining the behavior of ¢(z).

If Quadraﬁo function ¢(z)... ..then its rﬁciWO(}N f(z) = %
T q x
has a zero at has a vertfical asymptote at
has a local minimum (h, k) hos a local maximum (h, 1)
has a local maximum (h, k) hos a local minimum (h, %)
approaches oo approaches zero (asymptote y = 0)
is positive Is POSH’iV@
is negative IS V\@@&ﬁV@
equals &1 GQUOHS +1
Example3 Draw the graph of f(z) = m The graph of ¢(z) = 22 — 8z + 12 is already

shown.
Asymptotes: y = 0,0 =2, 2 =06
Vertical asymptotes when g(x) = 0°
- 8r+12=0
(x —2)(x—6)=0
r=20 =6

y-intercept: (0, %) os f(0) = %

Vertex: (4, — %)

q(r) has verfex atf (4, —4)
because 28 = 4,
g(4) = (42 —8(4) + 12 = —4

Points wihere f(z) = q(x) = +1 are marked.

Note that you won’t typically be given the parabola for the quadratic in practice questions. It’s
still a good idea to draw it first before attempting to draw its reciprocal.
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Example 4 Sketch a graph of f(z) =

Rewrite f(z) in the form L: f(:lj) =

q(z)

Properties of ¢(x):
Zeros: NON®

y-intercept: (0, 2)
Vertex: (2, 3)
Equals £1: (1,1) and (3, 1)

6.6 Functions with Quadratic Denominators

22 —4x+5

1

_
51;2—233+§

Properties of f(z):
Vertical Asymptotes: NONE

y-intercept: (%)_1 = % — (0, %)

Vertex: <%>_1 =2 = (2,2)

Equals +1: (1, 1) ond (3,1)

Horizontal Asymptote: Y = 0

© 2020 Shaun Carter v. 0.3
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7.1 Radical Expression Concepts

Recall that the nﬂﬂ FOOT of x is the value y such that y™ = x, which we write as

y=1r

e The symbol _ 1/ is the mdlwd symbol.

e The small number written over the radical _ 71 is called the Iﬂd@X .
(Don’t mix this up with a coefficient written in front of the radical.)

e The value U under the mdw/al is called the mdloalﬂd .

The 2nd root is called the SQluarB FOO1' , and is usually written without the lV\dBX .

The 3rd root is called the CUb@ FOOT .

Example 1
V81 =9 because 9% = 81
/125 =5 because 5 = 125
/32 =2 because 27 = 32

Simplifying Radicals

It is conventional to write radical expressions with the smallest possible value in the mdl()alﬂd .
This is done by identifying a faCJJfOF which has a rahOﬂal nth root.

Example 2 Simplify the following.

V72 = V3612 V108 = v/27V/4 V128 = v/64v/2
= 6v/2 = 3v/4 —2v/2

The same principle can be used when there are VO&FIO&H@S in the mdl(baﬂd .

Example 3 Simplify the following.

V7527 = V2520131 V48z5 = V813V 622 Vv 8lxy® = /81yt Yxy
= 52°V/3x = 22V 62 = 3yv/ay
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Adding and Subtracting Radicals

Radical terms with the same radlcaﬂd and ' IV\dGX can be added or subtracted by adding
or subtracting their OO@‘F‘H(\JI@VY@ , just as ||I<€/ TGFVV\S are simplified.

Some radicals may need to be Sim ||ﬁ6d first.

Example 4 Simplify the following.

9V6 — TV3 + V6 + 43 = 10V/6 — 3v/3

Example 5 Simplify the following.

2v/45 4 3v/50 — 6v/8 4+ 4v/20 = 2v/9V/5 + 3v25V2 — 6V4V2 + 445
=2.3V5+3-5vV2-6-2v2+4-2V5
= 6vV5 4 15v2 — 12v2 + 85
— 14V/5 + 3v/2

Multiplying Radicals

Radicals with phg same index can be multiplied by multiplying their radlcalﬂdé . If each radical
has a CO@‘F‘HCA@N , these are multiplied together.

Example 6 Simplify the following.

3v10 - 7V2 = 21V/20 W7 -5V14 = 10v/98
—21-2/5 —10-7V2
= 42/5 = 70V/2

If binomial expressions are being multiplied, then we can use the dlSTHbUhV@ 'WO'VGFT\/ .

Example7 Simplify the following.

VB 42
3v2(V5 + 4v2) = 3V10 + 12V/4
— 3v/10 + 24 3V2 | 3v10 | +24
Example8 Simplify the following.
2 +V5
(24 V5)(7T—6v5) = 14 — 125 + 7V/5 — 6125
=14 —12v/54 7V5 - 30 7 14 | +7V5
— 16 —5V5 —6v/5 |-12v/5| —30
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Dividing Radicals

When dividing radicals, it is considered good practice to ensure the d@lﬂOVV\II/\aJ(OY is mh0m| ,

in a process called rahOﬂQ'lZW\@ W]@ d@ﬂOW\IV\Oﬂ'OF .

If the dGVNOVV\Im’(OF has _ ONE term, we can multiply by an appropriate radical to make it
mﬂOV\a| . In the case of a square root, we can use the SOMe SQUQrﬁ rOOT .

Example9 Rationalize the denominators.

WT_ 3T V3 W6 _ 46 Vi
5v3  5V3 V3 372 3V2 V4
T 398
@ 8v/3
5 T 6

43
3

If the d@ﬂOW\lV\Oﬂ’OF has hNO terms involving square roots (but not higher roots), we can

make it mﬂOIﬂa| by multiplying by its OOVlIuglafﬁ , following the same process we used for
dividing complex numbers in section 4.1.

Example 10 Rationalize the denominator.

6v2+7v3  6V2+7V3 3vV2-5V3
3v2+5v3  3v2+5V3 3vV2-5V3

18V4 + 216 — 30v/6 — 35v/9
9v/4 + 15v/6 — 15/6 — 25/9

—69 — 96
—57

69+ 9v6
BT
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7.2 Rational Exponents

Review of Exponents

An GX'VOV\GN is used to indicate repeated VV\UH'I'VHOOKTIOV\ of a number called the ba% .

al=a-a-a...a
————

n times

where n is the GXPOHGN and a is the baé»@ .

Exponent Quotient Rule

Exponent Product Rule

m-n

Exponent Power Rule

1

m ) n __ .mn —n

(a

Base Product Rule

Base Quotient Rule

(ab>n — all,rb‘ll,

Special Value Zero Special Value One
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Rational Exponents

When an exponent is a ‘Fra(‘thV\ , it is known as a rahOﬂa| GX,VOH@N . We can use the
EXPOV\GV\T POW@F KUI@ to help evaluate them.

Example1l Evaluate the following.

361/2 _ (62>l/2 813/4 — (34)2/‘1 87/3 — (23)7/3
_ 62.1/2 _ 34.3/4 _ 23.7/3
_ 61 _ 33 — 27
=6 =27 =128

Let’s take a closer look at the last example and consider what 87/ actually means. Recall that an

GXPOHGN indicates how many times the bﬂgﬁ is multiplied by itself. From the diagram

it’s simple to see that, for instance, multiplying by 8 ﬂﬂr% times results in 83 = 512.

-8 -8 -8

1 2 4 8 16 32 64 128 256 512

But what does it mean to multiply 8 seven-thirds times, since it is not an IVﬂ%gI@r ? Consider

that multiplying by 8 once is the same as multiplying by Z three times. It follows that
multiplying by 8 “one-third times” is equivalent to multiplying by Z once .

Finally, this means that multiplying by 8 seven-thirds times is the same as multiplying by Z
seven times, and that 87/3 = 128.

Roots and Exponents

Consider the following:

() () () ()]
=6 _ 33 _ 97
=927 = 128

Nptice that we’re performing the SOMe 00&|0Ll|0d'|OV\S as the example above, with the
lV\dBX of the root taking the place of the d@V\OW\IV\Oﬂ’OF of the exponent. This is because
radicals and rational exponents are 60]UIV(A|6N )
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Theorem: Roots and Rational Exponents

n T = :Cl/” n IT”’ _ ( n x) m _ xm/u
Proof
Let y = /x
— =" defintion of the i root
n ), 1 n
ah = (MY
=y exponent power rule
=y

= =2
Vam = (@")" ="
m

(V)" = ()" = 2" -

Example2 Write the following in exponent form.
V11 = 11" V69 =6 (V21)'3 = 21"

Example3 Write the following in radical form.

7 = /7 31°° = /315 10" = /1011

Example 4 Evaluate the following.

257 = /25 325 = (v/32)? 343" = (v/343)*
—38 — 2401

Example 5 Simplify the following.

(%)12 _ .1'712/4 6 3 — m:a/ﬁ 1\2/1— _ (24>1/12
= S(Z3 — II/Q _ 2"’1/12
= \/T — 271/3
=2
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Algebra 2 Notes

7.3 Square Root Equations

Recall that to solve rational equations, we converted them into polynomial equations, which we
then solved using the usual methods. For equations with Squarﬁ FOOf S we can take a similar

approach.

Like rational equations, equations with Squarﬁ FOOTS can have GXTMV\@OUS 50'Uh0ﬂ5 ,

so each solution needs to be checked against the OH@WW una‘hOﬂ .

Examplel Solve x = +/7x+ 15— 1.

Step 1: Rearrange the equation to isolate

the _SQUAre oot .

r=+7r+15—1
r+1=+T7x+15

Step 2: Eliminate the _SJUO® 100f
by _SQUAIING _ both sides.

(z+1)* = (VTz + 15)°

>+ 20+1="T7x+15

Step 3: Solve the resulting equation.

22 —br—14=0
(x—=T)(xz+2)=0
r=70 z=-2

Step 4: Check for 6X‘i’raﬂ60u5

solutions.

War=7:LH=7
RHC = /7(T) + 15— 1
=64 -1
=8—-1
=7 (valid)

fr=—2:1LHC=-2
RHG = /7(—=2) +15—1
Vi1
=1-1
=0 (extraneous)

Step 5: State the Va“d solutions.

— =7

124
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Equations with MU'hEl@ square roots are more challenging to solve, and require SQU(AHV\Q

more than once, as only one root can by |§O|ﬂ+@d at a time. Care is needed to apply the
P@FWCGOJF Squarﬁ rule appropriately.

Example2 Solve vz +4+3=+Tx+1.
vr+4+3=+Tx+1
2 2
(Ve+d+3) = (Vio+1)

(Ve +4)?2+2- Vo +4-3+33=7zx+1
r+4+6Vr+4+9=T7Tr+1

6vVe+4=6x—12
vVer+4=x—2

(Veri) =@ -2
r+4=a—4x+4
2> —5r =0
z(x—5)=0
r=00 =5
¥ ax=0: LHSC = V4 +3=5
RHSC = V1 =1 (extraneous)
¥ x=5: LHS = V5 +44+3=6
RHC = \/7(5) +1 =6 (valid)

— =295
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74 Square Root Functions

Functions which contain a deOOH can be called mdlc()ﬂ ‘FUV\C‘hOHS . For this class, we
will consider SQHQF{’/ FOOT and C/UIQ@ FOOT functions.!

parent function
flz) =z =2’
domain

[0, 00)

range

[0,00)

relation type

one-fo-one

z-intercept

(0,0)

y-intercept

(0,0)

endpoint

(0,0)

As the inverse of Q]uadmﬂc functions, square root functions have Parabomé for their
curves, though facing a different direction. Half of the Eambom is missing; if the bottom half
was present, it would not be a ‘FUHO‘hOV\ .

Because the square root is UV\dﬁﬁV\@d for V\@@@hV@ numbers, all the Iﬂ@gl&ﬂV@ real
numbers are excluded from the WV\'Vh@d dOVV\aW\ of the parent function. We need to make
sure that all square roots have only QOSH'IVG numbers or _ZOI0  under them.

"We also only consider real-valued functions in this class. So, even though we know that \/—1 = i, for instance,
we’ll treat is as undefined in this section.
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Example 1 Find the domain and range of Example 2 Find the domain and range of
flz) = -2y +4+6. g(x) =+/—6(x —2) + 5.
r+4>0 —6(x —2) >0
x> —4 r—2<0
domain = [—4, oo) r <2
domain = (—oo0, 2
vr+4>0 (=o0,2]
—2vx+4<0 —6(x —2) >0
fz) =—-2Vx+44+6<6 g(x) =+/—6(x—2)+5>5
ronge = (—oo, 6] rnge = [5, oo)

By applying meVNSFOFVV\aﬁOHS to the parent function, we get the @GV\GFOH WCOFVV\ of the

square root function:

f(x) = A/n(z — h) + k

Recall from section 1.4 that n represents

 a reflection across the y-axis if n1s m@ahVG

i|if 0<n <1

e a stretch from the y-axis by a factor of

In

« a compression toward the y-axis by a factor of |n| if _|/1] > 1

For our previous parent functions, their symmetry meant that all reflections could be represented
with only A. This function has no symmetry, so n is needed as well.

A sketch of a square root function should include:

shape of curve | "Nalf" parabola with enough points fo show strefci/compression

z-intercept y =0, fid = by soving f(x) =0, may not exist
y-intercept =0, find y by evalating y = £(0), may not exist

(h, k), Using translation of parent function o identify
may be dfferent with restricted domain

endpoint

© 2020 Shaun Carter v. 0.3 127



Chapter 7 Radicals and Rational Exponents

Example 3 Sketch a graph of f(x) = —2v/z + 4 + 6.

z-intercept: (5,0)

—2Vx+4+6=0
—2Vz +4=—6
Vi+4=3
r+4=9

T =09

y-intercept: (0,2) a5 f(0) = —2V4+6=2
endpoint: (—4,6)

Example4 Sketch a graph of g(z) = /—6(x — 2)+5.

z-intercept: NONG
V—6(x—2)+5=0
v/ —6(x —2) =5
No solufion as square root cant be negative.
y-intercept: (0, 23 + 5)
g(0) = /=6(—2)+5=12+5
— 23 + 5 ~ 8.464

endpoint: (2, 5)

Algebra 2 Notes

Yy
(_47 6)

2
\ .
5o~

Y
2v/3+5
(2,5)

X

Example5 List the transformations required to transform f(z) = z'/* to g(z) = (—2z + 5)1/ ?-3.

To identify the transformations, we need to factor fhe inner part of ¢

g(x) = [-2 (= —

Reflect across fhe y-axis.

Shift 3 units right.
Shift % units down.

128

I

2

Compress fowards the y-oxis by a factor by a factor of 2.
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Example 6 Find the function f represented by the following graph.
y endpoint: (—1,3) = h=-1,k=3

(—1,3) Groph is reflected across tne x-oxis.

flx)=—/—2(x+1)+3

Example7 The parent function f(z) = \/z is compressed toward the z-axis by a factor of 5. What
horizontal transformation results in the same function?

Let g be the resutting function.

9(95):5 X

1
=\ 5%

which corresponds 1o a sfrefeh from the y-axis by a factor of 25.
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7.5 Cube Root Functions

& | | | |

parent function

flz)=Yx =2

=

8
|\_/

j

w
=
|
<7
W
|
%
(ON]
|
5

| ]
—_
o 4+-oO
i
<L
[\
ﬂ““
w2
gug
W
%
ot

domain

R -

range | foa o S R SRR B SR R Sk e

R

relation type

one-to-one

z-intercept

(0,0)

y-intercept

| | | | | | | |
| | | | | | | |
T T T T T T T T
| | | | | | | |
O O O T P I I T A B e T S B R (T T SR A P R |
9 | | | | | | | | | |
| | | | | | | |
| | | | | | | |
1 1 1 1 1 1 1 1
+ + 1 -+ + 1 + =
| | | | | | | |
1 1 1 1 1 1 1 1

point of inflection? L

(0,0)

Unlike the square root, the cube root can be evaluated for V\@gl&hV@ real numbers, which
simplifies finding the dOVV\allﬂ and mﬂglﬁ for cube root functions, which are both
0&” r60t| V\UVV\bGFS if there is no domain restriction.

As the inverse of the CJUb|C/ parent function, y = 23, the curve of the C;Ub{’/ rOOT function

has the same shape, F@ﬂ@d’@d over the line y = x.

Using WaﬂéwcormaﬁOV\S , we can write the general form for a cube root function

flx)=AVxe —h+k

2This point does fit the definition of inflection we’ve used, because the curve changes from concave up to concave
down here, but there are other ways to define inflection which would technically exclude this point. The distinction
doesn’t matter in this class, but does in Calculus. Alternatively, this could be called a vertical tangent point.
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7.5 Cube Root Functions

Example1l Sketch a graph of f(z) = -3 (z — 8)1/3+6.

point of inflection: (8, 6)

z-intercept: (16, 0)
—3(z—-8)"+6=0

—3(z—8)" =—6
(z —8)" =2
r—8=38

r =16

y-intercept: (0, 12)
0s f(0) = —3(—8)"/ +6 =12
endpoints: NONe, 0s domain Is R

12

Example2 Find the function g represented by the following graph.

Y

2.5

© 2020 Shaun Carter v. 0.3

Rt of inflection: (—1,2) = h=—-1,k=2
g(x) =Avr +1+2
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7.6 Quadratics, Cubics and Roots as Inverses

Recall the following theorem:

A function f has an _INverse function  f-
if and only if f is a 0Ne~10-0Ne  function.

A cubic function of the form f(z) = A(z — h)3 + k is OV\@—TO—OI% , so it will always have an
INVerse ’FUV‘U"IOV\ . The _INVEFSE  will be a GUb@ FOOT function.

A quadratic function is more challenging because it is

VV\aV\\/—TO—OVYG , so does not have an _lIVEI'SE ‘FUV\CﬁOW . ~
To get around this problem, we can restrict the dOVV\aIV\ of the \“

function.

The resulting NVeISe  will be a SQIUGrG o0t function. s

Suppose f is a _qUAdraflc_ function,
and that y = f(z) has a _VeITeX_at (h, k).

If the domain of f is [h, 00) or _(—o00, h} ,
then f is _0Ne~10-0N% . domain = (~o0, i

It is easiest to find the inverse of a quadratic functions in V@H’GX form.

Example1 Consider the function f : [2,00) — R, where f(z) = (v — 2)? — 4.

a) Show that the inverse function f~! exists.

h=2

Domain Is [2,00) = f I5 one-to-one —> [~ existe,
b) Find the range of f, and hence, the domain of f~!.

y=f(z) s Wrignt = k= —4 15 a minimum.

range of f = domain of f~! =[—4,00)
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c¢) Find the rule for f—1.
y=(v—-2)% -4
Swap x and y:

(y—20°—4=u
(y—2°=z+4

y—2=+vxr+4
y=vVr+4+2

f )=V +4+2

d) Use the graph of y = f(x) shown to plot
Y = f_l(:v) on the same plane.

7.6 Quadratics, Cubics and Roots as Inverses

Example2 Find the inverse function of g(x) = —2v/z — 5+ 3, and state the domain and range for

each of g and ¢~ 1.

y=—2Vr—5+3
Wap x <y :

—2yy—5+3=vx

—2\y—95=x—3

© 2020 Shaun Carter v. 0.3

domain of g =[5, 00)

range of g = (—o0, 3]

domain of ¢! = (—o0, 3]

range of g~ = [5,00)
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Example3 Find the inverse function of f(z) = [5(z + 4)]"* — 9.
y=[5(z+4)]"~9
WAp x <>y 5y +4)]" —9=x
5y +4)]" =z +9
5(y +4) = (x+9)°
y+4==1axz+9)°
y=1(x+9)° -4
(x+9)° -4

~
L
—~
&
~—
I
U= o
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8.1 Exponential Functions

An 6X?OV\6V\1’|0&| futhV\ is a function of the form
flz)=A-b"+ k

where the ba% , b, is a positive real number which is not 1. The simplest cases have A = 1

and k = 0, such as with the following two examples.

N

32

|
ot
|
B
|
w
‘ I
[\
I
—_
— 1o
oo+ w
—_
D

| | |
1 1 1
functions L L 1
unction 32 16 8 1 2

fla) =2

g(z) = (3)"

domain

R

range

(0,00)

relation type

one-fo-one

z-intercept

none

y-intercept

(0,1)

horizontal asymptote

y=20

For b > 1, including b = 2 above, the function shows GX,VOIAGV\ﬁN @]rOWﬂ/\ , which means as

the function increases, the rate of increase is also increasing proportionally.

For 0 < b < 1, including b = % above, the function shows GXPOV\@VTha' dﬁw\/ , which means

as the function decreases, the rate of decrease is also decreasing proportionally.

© 2020 Shaun Carter v. 0.3
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A sketch of an exponential function should include:

shape of curve | eXponential curve showing growth or decay

x-intercept y =0, find x by SOMV\@ f(x) =0, may not exist

y-intercept =0, find y by evaluaﬁn@ y = f(0)

asymptote Horizontal: y==k

endpoints evaluate the function af the bounds of the domain

It is a good idea to show an additional point, such as (1, f(1)), to show the rate of growth or decay.

Example1 Sketch a graph of f(z) = $3% — 3.

Yy
z-intercept: (2,0)
lox 9 __
137 9 -
logz 9
23 =3
3" =9
x
r =2 2
y-intercept: (0, —4)

_ 1 9 __ _
05 f(0)=5—35=—4 | )

. — _2 4 4 ______________
asymptote: Iy = —5 y— 15
endpoints: None, 0s domain s R
Example 2 Identify the function g represented in the graph below.

Y asymptote: y =0 =— k=10

y-intercept: g(O) =A- 0 =2 — A=2
point: 9(2) =2-b*=1.28

1.28+
=064 = b=08

g(x) = 2(0.8)"
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3.
Example3 Sketch a graph of g(z) = 4<2Z !

z-intercept: NONG

18741 =0 has no solufion
y-intercept: (0, 2)

05 g(0) =7 +1=3
asymptote: 1y = 1

endpoints: NONe, s domain Is R

)1,

AN

Algebra 2 Notes
Y
(1,3)
5
4
4___{ ______________
y=1
x

Example4 Suppose f is an exponential function, whose graph y = f(x) passes through the points
(2,2) and (5, i), and has an asymptote y = 0. Find the rule for f(x).

k=0 = f(x)=Ab"
f(2) = Ab* =
.1
f(5):AbO:Z
Ab® 1
A2 2
3 1
b" =5
138
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8.2 Logarithms

Consider the equation 3% = 243, whose solution is the answer to the question

Which power of 3 is 743¢

The diagram illustrates that the solution is - = 5.

The mathematical operation which answers the question above is the |O€l0kr|ﬂ/WV\ . This particular

case is written

logs 243 =5
which is read as “the IO@arl'HnW\ |90k96 3 of 243 In general,
r=a" = log,z=n
Example 1
logs 125 =3 because 5% = 125
log, 256 = 8 because 2% = 250
log, % =4 because 4 % = 4% — %
log, /7 = ) because 7/ = /T
Note that if the base is omitted, it is assumed to be ﬂ This is sometimes known as a
common logarithm.
Example 2
log 10000 = 4 because  10* = 10000
log 0.001 = —3 because  107% = 0.001
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Example3 Write the following equations in logarithmic form.
a=3" s =tk p=10"
b= logsa k =log, s r =logp

Example 4 Write the following equations in exponential form.

u = logy, v m = logn w = log, z
v =24 n=10m z =¥
Logarithm Rules

Recall that we reviewed the GX'VOHGN rU|69 in section 7.2. Some of those rules can be
rewritten as equivalent |O@]arlﬂf\VV\ FU|65 .

Exponent Product Rule Logarithm Product Rule

a --a =a 108;(1,(515 ’ 1]) - 1Oga T+ 1Oga Y

Exponent Quotient Rule Logarithm Quotient Rule

am _ m—n . X X .

Priais log, ; = log,x —log, y
Exponent Power Rule Logarithm Power Rule

(™) =a™ log, (") =n -log, x

Negative Exponent Rule Reciprocal Logarithm Rule

- an 08, z = —10g, ¥
Exponent Special Values Logarithm Special Values
0 __ 1 _ . 0 _
a =1 a =a log,1 =20 log,a =1
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Example 5 Simplify the following without using a calculator.

21ogg 3 + logg 4 = log, 37 + log, 4 logy 8 — logs; 1000 = log; ﬁ

1
= logg 9 + logg 4 = logs 15z
— log; 36 = -3
=2
The Change of Base Rule
Recall from section 7.2 that we used the following diagram to illustrate 87/ = 128:
-8 -8 -8
1 2 4 8 16 32 64 128 256 512
2 2 2 -2 2 2 2
7

We can state this in logarithmic form as 10g8 128 = g

When we originally calculated this, it was difficult to think of Izg as a power of 8 . Instead,

we expressed both numbers using Z as the IQQS@ , which in logarithmic form are

log, 128 =7 log, 8 =3

log, 128

Equivalently, we can write 10g8 128 =
log, 8

This is an example of the following rule:

Theorem: Change of Base Rule

10g3 81 . log \75
logy, 81 = —2— e _ 1955
el logz 27 logys V5 = logs 25
= 3 - s
2
1
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8.3 Logarithmic Functions

A |O@0WH’|(WV\|G ‘FUV\C‘hOV\ is a function of the form

Algebra 2 Notes

f(x) =log, [n(z — h)]

where the ba% , b, is a positive real number which is not 1. The simplest cases have n = 1 and

h = 0, such as with the following two examples.

functions

f(z) = logy() 5 -4 -3

g(x) = logy5(x)

domain | |

(0,0)

range

R

relation type

one-fo-one -

z-intercept -

(0,1)

y-intercept

none L

vertical asymptote 1

xZO I I

Example 1 Express f(z) = logs(z) + 2 in

the form stated above.

f(z) = logs(z) + 2
= log; () + logs(25)
= log;(25x)

142

Example2 Express g(z) = §logy(z) in the

form stated above.

g(x) = 3log,(z)
log,
log, 8

= logg(m)
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A sketch of an logarithmic function should include:

shape of curve | logaritmic curve, exponential curve reflected over y = x

r-intercept y =0, find z by SOMV\@ flx)=0

y-intercept =0 find y by evauating y = £(0), may not exist

asymptote vertical x = h

Example3 Sketch a graph of f(z) =log, [ (z — 4)].
z-intercept: (7,0)
log, [5 (z —4)] =0 Y
Ho—4) -1
r—4=3 = =7
y-intercept: NONE
a5 f(0) =logy(—3) i5 undefined

asymptote: © = 4
other point: (10, 1)
log, [5(z —4)] =1
(x —4) =2
r—4=6 = =10

1
3

Example 4 Identify the function g represented in the graph below.
Y asymptote: © = 0 = ¢(x) = log, nx
z-intercept: ¢(2) = log, (n-2) =0

— 2n=1— n=

DO |—=

xT

point: ¢(8) = log, 4 = —1

D,

— b_1:4 —_— b:%JL
(87_1)

g(x) = logg o5 (%1’)
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Algebra 2 Notes

Exponential and Logarithmic Functions as Inverses

The WVEISE ofan exponential function is a |O@]arl1’|/w\f\|0 function with the same ba% .

This means that the inverse of f(x) = a” is f_l (SL") = lOQa T .

Example 5 Find the inverse function of f(x) = 153" + 2, and state the domain and range for

each of f and f~1.

y=15-3"+2
Wap x>y :
15-3+2==x
15-3Y =2 -2
r—2
3Y =
15

y = logs (")
f_l(x) = log;s (w152)

domain of f =R

rnge of f = (2,00)

domain of f~' = (2, 00)

rnge of f7' =R

Example 6 Find the inverse function of g(z) = log [6 (z — 4)], and state the domain and range for

each of g and g~ .

y =log6(z —4)]
Wap x <>y
log [6 (y — 4)] = «

6(y—4)=10"
y—4=¢-10
y=7¢-10"+4
-1 1 T
foi (@) =5 10"+ 4

144

domain of g = (4, c0)

rnge of g =R

domain of ¢! =R

rnge of g~' = (4,00)
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8.4 Natural Exponents and Logarithms

The Basee
Observe the following graphs of y = 2*, y = 3% and y = 5”.

am = 1.0986 Am = 1.6094

am = 0.6931

You should recall that changing the bﬂgﬁ of the exponent does not change the _ U —|Vﬂ'6r06p1' ,

which is (0,1) for each curve. However, changing the ba% does change how steep the curve is
at this point. This is represented by the dashed line, which is the Talﬂglﬁﬁ' to the curve at the

y-intercept.! Notice that the 5IOE65 of these tangents are decimal values, which each turn out
to be irrational.

We might wonder if it’s possible for the slope of this tangent to have
an exact integer value, such as 1. As it happens, this occurs when the

ba96 is a particular |FmﬁOIﬂa| constant, which we denote e,
and has the value ?

e = 2.71828182845904523536 . . . e’

The relationship between a function and the slopes of its tangents is the basis for much of calculus,
which makes the function f(z) = e very important. e shows up in many other areas of math also,
as well as being used in science, engineering, finance and many other applications.

For Algebra 2, we need to know of the existence of e and that it is closely related to exponents and
logarithms. However, we don’t need to worry if we don’t yet understand why it is important or
where it comes from.

When exponents or logarithms have e as their ba96 , they are called V\Od'uml . All exponential

and logarithmic functions can be written as transformations of mfum| exponents and logarithms,

so we can use these as ParGN ‘Fum(\fhomg .

The V\Oﬂ'um |O@0krlﬂﬂVV\ is important enough that it gets its own notation:

In (z) = log, (x)

'Remember from Geometry that the tangent to a circle is a straight line which touches the circle at a single point?
Graphs of functions also have tangents, which have a very similar meaning.
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Natural Exponents

The parent function for natural exponents is f(l’ ) — et , which leads to the general form

f(r) — Ae’n/ll? _|_ k

Instead of changing the bﬂgﬁ to control the rate of exponential @FOWJFIA or d@(}a\/ ,
we can change the value of n. If n is EOSIhV@ , the function exhibits exponential gerWﬂq .
If nis V\Gglaﬂv{i , the function exhibits exponential dﬁcay .

Example1 Plot the points at £ = 0,1,2 on each of the following graphs, and label them with
exact coordinates.

ty
y:@sC yze—x

1(0,1)

1 1, et .
) ~ = “““(’>P’Z)x
-5 —4-3-2-1 1 2 3 4 5 -5 —-4-3-2-1 1 2 3 4 5

Since e* and Inxz are _INVEISES , we can use the result e™® = a to change the base of an
exponent to e:

a® = (6111(1)37 _ eln(a)~.77

Example2 Express f(z)=>5-4" using e as Example 3 Express g(z) = 3 - (%)z as a
the base. natural exponential function.
— €z 1\Z
flz)=5-4 g9(x)=3-(3)
N\ 7 _ —x
—5. (6111(4)) =3-8
_ 56111(4):1: — 3. (6111(8)) o
_ 367111(8):1'
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Example 4 Identify the function f represented in the graph below.

\f‘/ osymplote is y =0 = f(x) = Ae™
05 f0)=A=65
£(4) = 6.5¢%" = 2.59
7 e =40 — an =1 (33)
_ 1 259\ _
n=1ln(32) =-0.23
r f(ﬂf) _ 6'56—0.23.’17
Natural Logarithms 51Y
4 £+
The parent function for natural logarithms is 31 (2.9)
f(ilf) =Inx , which leads to the general 21 ’
form 1 @0 L
f(:z:) — A.-ln [n (:C _ h)] 1l (612_1?; 4 5 6 7 8 9 10
—92 ] ’
Instead pf changing the 190&96 to control the -3 Yy = In (:B)
dlrﬁ(‘thﬂ and Sh&?@ of the logarithmic —4
curve, we can change the value of A. =51

We already have the Ohdﬂ@@ O’F ba% ru|6 which we can use to change logarithms to

their natural form:

Inxz
log () = —
8a(7) = 1 —
Example 5 Express f(x) = log, 3z using Example 6 Express g(z) = log,,x using

the natural logarithm.

f(z) = log,(3z)
1

© 2020 Shaun Carter v. 0.3

the natural logarithm.

g(z) =logy,
1

- In0.2

1
=——Inzx
Inb

Inzx
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Example7 Identify the function g represented in the graph below.

y asymptote is z = —3

| — g(x) = Aln[n(z + 3)]
' 9(=2) = Aln[n (=2 +3)] = 0
S~ — In(n) =0

— n=e'=1

— g(x) = Aln(x + 3)
' g(0) = Aln3 = —0.78

—0.78

= —0.71
In 3

:}A:

g(x) = —=0.71In (z + 3)

Example8 Find the inverse function of f(z) = 20e %901 1 5. State the domain and range of each
fand f~1.

y = 20e 001z | 5
Swap x,y: x=20e " 45
20e”"M =z -5
e " = .05 (x — 5)
—0.01y = In [0.05 (z — 5)]
y = —1001n[0.05 (x — 5)]
fHz) = —1001n[0.05 (z — 5)]

domain of f =T, range of f = (5,00)
domain of f~!' = (5,00), range of f~' =R
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8.5 Exponential and Logarithmic Equations

8.5 Exponential and Logarithmic Equations

Method 1: Equating the Base

The simplest method to solve equations involving GX'VOﬂ@Vﬂ'S or IO@QHMW\S is often to
write bOW] 5|d€9 with the same IOQSG . Then we can use the following theorem.

Two exponential expressions with the same bose  are 60!Ud|

iff (if and only if) they have the same GX,VOV\GV\T :

Example1 Solve 812+ = /3,
(34)2m+1 _ 3
34(22+1) _ gif

42z +1) =4

2

20 +1=3
21‘2—%
= L
L= "1

Example2 Solve 6°213 = 36419,
Gor 3 — (62)4-’1’+9
_ 68.’I;+18
Sr + 3 =8x + 18
—3x =15

r= -5

This applies equally to IOQWIWWV\S , as they are the |V\V6F9€ of GXPOWGNS . You'll

need to check for extraneous solutions.

Example3 Solve log(4x—2)—log(z—5) = 1.

4o — 2
1og( ‘ 5) = log 10

-
13:5_10
4o — 2 = 10x — 50
—6x = —48
r=3_8

© 2020 Shaun Carter v. 0.3

Example 4 Solve 2In(x) = In(2z + 3).

In(2?) = In(2x + 3)
2? =2x+3
1° =2z —3=0
(x=3)(x+1)=0
r=3 0 rv=—1
In(—1) is undefined
— =3
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Method 2: Using Inverse Operations

Algebra 2 Notes

Since exponents and logarithms are INVEISES  of each other, we can use them to solve equations

involving the other. The solutions obtained when using this method are often lrmﬂoml .

Example5 Solve logs(z +9) = 2.

r+9 =3
=38

r=—1

Example7 Solve 4273 = 20

to 2 decimal places.

42:];—3 = 20
22 — 3 =log, 20
2z = log, 20+ 3
z = 3 (log, 20 + 3)
~ 2.58

Method 3: Using a Substitution

Example 6 Solve 3¢”/* + 4 = 10 exactly.

3¢/t +4 =10
3e"* =
et =2
7=In2
r=4In?2

Example8 Solve 2In(z —1)+5=1
to 3 decimal places.
2In(z —1)+5=1
2In(x — 1) = —4

In(x — 1) = -2
r—1=¢"2
r=e2+1
~ 1.135

Sometimes we can change an equation to a simplified form using a thoughtful SUbSﬂWﬂOﬂ .

Example9 Solve 3%% —6-3% — 27 = 0.

(32 —6-3"—27=0

Let a = 37

a’ —6a—27 =0

(a—=9)(a+3)=0

150

a=9 0 a=-3

3"=9 or 3»==3

Tr =2
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8.6 Exponential Regression

Recall that VGQ]FGSSIOV\ is the process of fitting a modeling function to a set of data in order
to approximate the relationship between variables.

EXIVOV\GV\TW F@@F@SSIOV\ uses an 6XPOH6N1Q| function for the modelling function.

This means choosing values for _(  and b so that f($ ) — @ - b"  fits the data as well
as possible.

Like linear and quadratic regression, performing 6X?OV\6V\1’I0&| F@@]F@SSIOV\ involves calculating
the the CO@‘F‘HCI@N O‘F d@f@rv\/\lﬂaﬂOV\ , denoted by R2 , which measures how well the

regression curve fits the data.

If your device or software offers “log mode” for this type of regression, this generally provides a
better fit. Some devices do this by default.?

Example1 A research lab is investigating the population of a sample of bacteria. After leaving
the sample for 24 hours at a time, the number of bacteria is estimated and recorded. Let t be the
number of days after the beginning of the experiment.

tay)| 1 | 2 | 3 | s | 6 | 7
P \ 5.74 x 10° \ 1.85 x 10° \ 7.49 x 109 \ 7.43 x 107 \ 2.17 x 108 \ 8.79 x 108

Use exponential regression to model bacteria population. 10 [P (x10%)
a = 175140, b = 3.34699, R = 0.999
p(t) = 175140(3.34699)"

The model is a very qood fit for the dafo, os R* 6 |
close fo 1.

Example 2 Predict the population at the beginning of the
experiment.

p(0) = 175140(3.34699)° = 175140

Example3 The researchers weren’t able to collect data on day
4. Estimate what the population would have been that day.

p(4) = 175140(3.34699)* = 2.20 x 107

2How this works, and the reasons why performing exponential regression this way is preferable, are beyond the
scope of Algebra 2.
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Chapter 9 Further Functions

9.1 Identifying Functions

Review of Parent Functions

Algebra 2 Notes

flz) = fz) = |z] fla) =2
fla) = a* fla) =3 @) =5
= e
flz)=Va flz) =z flz) = e
/) Recall that we can use these WF@N’ FUV\O‘hOV\Q ,
together with JfraV\SfOFVV\aﬂOV\S , to construct
( functions. By identifying these in a glraEh , we can
identify the corresponding ’FUV\C’hOV\ .

f(z)=Inx

154
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9.1 Identifying Functions

Examplel Identify the function f represented in the graph below.

~

A

0.704

(L _2)

shope = cube roof function
flz)=AVe —h+k

pt. of inflection — f(z) = AV —1-2

FO)=AY—1-2=-A-2=1

—A=3 — A=-3
flz)=-3Vr—1-2

Example 2 Identify the function g represented in the graph below.

5]

Y

1
1
1
1
1
1
1
1
1
1
1
1
1
1
dmm - —
1
1
1
1
1
1
1
1
1
1
1
1
1
1

© 2020 Shaun Carter v. 0.3

nyperbda = g(z) = -4+ k

z—h

asymptotes —> g(z) = 45 — 4

g(=35) === —4=0

A =4 = A=-2

=2
T) =13~

ot

K
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9.2 Algebraic Combinations of Functions

By OOW\bIHIV\@ functions in a variety of ways, we can create New ‘FUVWJ‘hOHQ . The
simplest thing we can do is to add , SUb"TaCff or VV\uH'IIV|\,/ functions.

e T h=f+g, then h(z) = f(z) + g(z) for each value of .

e Ith=f—g, then h(z) = f(z) — g(x) for cach value of .

e T h=f-g, then h(z) = f(2)g(x) for each value of z.
Note that for cach of these cases, h(x) is only _A8AINGA i both f(z) and g(x) are _deAINGM .
This means that the (OMAIN_ of 7 is the _ITBISBCHION  of the _dOMAINS _ of f and g.

We can also d|V|d€J functions.

f(z)
g()

In this case, we need to remember that we can’t divide by 7810 . so h(z) is only d@ﬁ d
if both f(x) and g(z) are d@‘ﬁﬂ@d and g(z) # 0.

o If h=f/g, then h(x) = for each value of x.

Example1l Complete the table.

T —2 -1 0 1 2 3 4
f(zx) undef 2 6 0 1 3 -9
g(x) 3 0 2 4 undef 1 -2

(f+9)(x) | undef 2 8 4 undef 4 -4
(f —g)(x) | undef /i 4 -4 undef 1 0
(f-9)(z) | undef 0 12 0 undef % 4
(f/9)(x) | undef | undef % 0 undef % |

Example2 State the domains of all of the functions in example 1.
domain of f={-1,0,1,2,3, 4}

domain of g ={-2,-1,0,1,3,4}

domain of (f + g) = domain of (f — g) =domain of (f-g)={-1,0,1,3,4}
domain of (f/g) = {0,1,3,4}
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1
Example 3 State the rule for h = f + g if f(z) = In(z + 3) and g(x) = oy Find the domains
of f, g and h.

r—>5
domain of f = (-3, 00) domain of h = (—3,5) U (5, 00)

In the previous example, the domain of the combined function could be identified from its rule as
the implied domain.

In the following examples, we’ll find that the domain of the combined function is different from the
domain implied by its rule.

Example 4 Find and simplify the rule for w = u-v if u(z) =

1

and v(x) = 2° + 322 + 3z + 1.
z+1
Find the domains of u, v and w.

w(z) = u(x)v(z) domain of v =R\ {-1}
:xi1($3+31‘2+31’+1) domain of v =R
1 |
= x+1(“1)3 domain of w =R\ {-1}
= (z+1)° (implied domain is R)

Example5 Find and simplify the rule for h = f/g if f(x) = (z + 3)e™® and g(x) = 2> — 42 — 21.
Find the domains of f, g and h.

h(x) = f Ei)) domain of f =R
I\ B domain of g =R
(w4 3)e _
T2 _4r — 921 domain of h =R\ {-3,7}
(z+3)e” (implied domain is R\ {7})
(x+3)(x—T)
=7
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9.3 Function Composition

Another way to combine functions is C/OVV\'VOSH"OV] , which means using the OUTE lﬂ' of one
function as the IV\EUf of another. The C/OVV\'VOQMOV\ of f and ¢ is denoted f o g, and the

function is defined as

(fog)(z)=flg ()]

Note that the Ordﬁr matters, because SWHTJWV\@ f and g results in a different function.
(go f)(x) =glf (z)]

Example 1

a) Complete the mapping diagram
for go f.

b) Are there any values for which

f ogis defined?

No, e range of ¢ and

the domain of f chare o
values, so f [g (x)] 15 olways

undefined.

U gof:U—-W W

Example 2 Use the function definitions to evaluate the compositions.

7| ) 7 49() (fog)®) = [lg(5)]
0] 4 = f(2)
1] 3 =0
2] 0
N (go £)3)=yglf(3)]
2 s g9(1)
51 6 R S S S =4
i 1 2 3 4 5 6 7
6| 2
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(fog)6)=flg(6)] (g0 f)2)=yglf(2)] (909)(2) =glg(2)]
= f(1) = ¢(0) =g(5)
=3 =3 =2

(fo£)O)=[[f0)]  (g0g)3)=glg(55)] (fog)3)=[lg(3)]

= f(4) =g(5.5) = f(5.5)
=5 =15 s Undefined

Example3 f(z)=2%+2x and g(z) =3z — 5. Find go f and fog.

(g0 f)(z)=glf(2)] (fog)(z)=flg(z)]
= g(2* + 27) = f(3x — bx)
= 3(2x* +22) -5 = (3x — 5)* +2(3z — 5)
=32° + 62 —5 = 927 — 307 + 25
+ 62 — 10
= 92? — 242 + 15

Example4 f:[-3,6] = R where f(z) = 2%, and g : (0,11) — R where g(x) =2 — 7. Find fo g,
and find its domain and range.

(fog)(x) = flg ()] Nso, = must be in the domain of ¢
=flz=7) domain of fog—[4,13] N (0,11)
=@=77 = [4,11)

fog has a vertex af (7,0), and
endpoints af (4,9) and (11,16)

range of fog=10,16)

f 2 is In the domain of fo g, then

g(z) 15 In the domain of f:
—3<g(x) <6
—3<2z-7<6
4<xr<13

© 2020 Shaun Carter v. 0.3 159



Chapter 9 Further Functions Algebra 2 Notes

Composition with the Inverse

With OOVV\!?OSITIOV\ , we can show that two functions are _I\VEI'SES , using the following
theorem.

f:A— Band f7!:B— A are NVerse  functions
iff (f~1o f)(x)=f"1[f(z)] =z for every x € A
and (fo f7Y)(z) = f[f " (2)] = for every z € B

Example5 Show that f(xz) = 5e* — 8 and g(x) = In [% (z + 8)] are inverses.

glf (@)] =g (5e” —38)
=1In [ (5¢" — 8+ 8)]
= 1In [+ (5¢")]

J

= In (e”

=X

Example 6 Show that f : [4,00) — R where f(z) = 22 — 82 + 21 and g(z) = v/ — 5 + 4 are

inverses.

flg(@)]=f (Vo —5+4)
— (Ve —5+4) —8(Vr—5+4) +21
VT =5 424z —54+42—8VT—5—32+21
=2 —5+8/r—5+16—8/r —5—32+21
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9.4 Piecewise Functions

We previously discussed piecewise functions in section 2.5, but only considered functions with

|lV\60\r pieces. In general, any function can be a piece of a piecewise function. For this course,

we’ll include quadeﬂG and GX'VOV\{’JI/\TIOH pieces.

Example1 FEvaluate each of the following using the function f.

24+2 0<zx<3
flz)=<16-27" 3<z<6
—rz+11 6<z<10

f(1) = (1) +2 f(8)=—8+11 F(5) = 16-2°7
= =3 =0.5

f(6) = —(6) + 11 f(3)=16-2"" £(10) s undefined
-5 _ 5

Example2 For function f above, plot its graph and find its domain and range.

Y

10 1

Domain:

0,3) U[3,6) U[6,10)

\O - (L11)

5 10
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Example3 Consider the function g defined as

x? — 8x 4 12 l<ax<b
g(z) =4 -3 5<z<8
—22+20z-99 8<z<13
a) Find the zeros of g. b) Find the intervals ¢ is increasing,
For « € (17 5], decreasing, or constant.
2 —8x+12=0 For = € (1,5), parabola is upright with
(z—2)(x —6)=0 o verfex af o = 4.
=20 =0 For = € [8,13), parabola is inverted
For = € (5,8), —3 #£0 with a verfex af x = 10.

For = € [8,13), Increasing on (4, 5) U (8,10)

—2?2+202—99 =0
—(x—=9)(x—11) =0
r=9 0 z=11 Decreasing on (1,4) U (10, 13)

Constant on (5, 8)

/eros are 2,9,11

Example4 Find the function h represented in the graph below.

v Quadrafic: \Vertex af (0,4), passes tnrough
; (=2,0) = y=—a>+4.
1 1
Lineor: m = —2b =6 = y =
—2x +6

Exponential:  doubling — b = 2, passes
fhrough (3,1) = y=41-2"

—224+4 —2<x<0
gx)=< 2x+6 0<x<2
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10.1 Matrix Operations

A VV\OﬂTIX (plural VV\OKJWIC:GS ) consists of numbers arranged into OWS  and CO|UVV\HS
in a rectangle. It is typical to assign them UVVGF COSE  variables, and to surround them

with _brockets 1

For example,

3.7 =2
A‘{9 —4 1]

The d|M6ﬂ9|Oﬂ9 of a matrix denote the number of _'OWS , m, by the number of (‘JOMW\V\S ,
I} n
n, which we write as _ 770 X 71 , and read as M b\/ n .

For example, the le\@ﬂﬂOﬂS of Aaboveare 2 X 3 , or we say Aisa 2 X3 VV\OKJWIX .

The individual GIGW\GNS of a matrix are denoted by _Q; i where a is the lower case letter
corresponding to the matrix variable, 7 indicates which FOW | and j indicates which COIUW\H .

Example1l Write the following using A above.

arp =17 as; =Y a3 = —2

A matrix with the same ngmber of OWS  and OO|UVV\I/\5 coran 1L X M VV\QJWIX , is
called a_SAUAE MATIIX .

An ld@ﬂﬂf\/ W\O&JWIX is a square matrix with ones along its dl&glOV\al (top-left to

bottom-right), and Z810s everywhere else. If the |d€/m+\/ VV\QJWIX is n X n, it is denoted
I,.

Example2 Write down I3.

1
Is = |0
0

O = O
_— O O

Example 3 IfB= I7, find b472 and b575.
Becouse the row and column dont mateh, by s not on the diagonal, o by 5 = 0.
Meanwhile, b5 5 15 on tne diagonal, so0 b5 = 1.

'Some mathematicians prefer to use parentheses.
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Adding and Subtracting Matrices

Matrices can be added or subtracted by adding or subtracting individual 6|€/W\6N§ in
COW@S'VOMIV\@ ,VOSH'IOV\S . This is only possible if the matrices have the same

leV\GI/EIOIAS , and the resulting matrix will also have the same leV\GIASIOIAS .

Example 4 IfC’:[_35 ﬂ andD:|:_27 _84],ﬁndC’+D and C — D.
—4 14 10 -2
C+D_[_3 _3] C—D_[_7 5]

Multiplying a Matrix and a Scalar

To distinguish them from matrices, individual numbers are called SOGIQFS .

A 90a|0kr cannot be added to or subtracted from a matrix, but it can be VV\UH'I|2|l6d . To

do so, we multiply each 6|6|M6Vﬂ' in the matrix by the scalar. The result is a W\O&JWIX with
the same dIVV\GV\SIOV\S as the original matrix.

Example5 Using A = [3 _74 _12}, find —5A.
—15 =21 10
A= [—45 20 —5]

Example 6 Find 3D — 4C, using C' and D above.

21 247 [-12 —24
SD—a0=14 —12_+[20 —4]
=33 0]
126 -16
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10.2 Solving Linear Systems with Matrices

We can take a system of linear equations at write them as a single matrix equation:

ai1r + a1y + aizz = b
a21r + a2y + a3z = by — AX =B
az1r + azpy + azzz = b3

a1l ai2 a13 x by
where A= |az1 asp ass X =y B = |by
asz1l as2 as;3 z

Then we can solve the matrix equation. The techniques used are beyond the scope of this course,
and tedious to perform by hand anyway, but are simple for a calculator.

Reduced Row Echelon Form

Step 1: Write matrices A and B together, which is called an ﬂU@W\@N@d matrix.

ajn a2 a3 | b
[A| B] = |a21 a2z azs| b
as1 az2 asgz| bs

Step 2: Apply the operation W@Wa to the matrix using a calculator. This applies a series of
operations which are equivalent to solving the system using the elimination method.

Step 3: Interpret the solution from the resulting matrix.

Example1 Solve
r+ y+ 2=6
20— y+3z2=11
—r+3y+42=28

1 1 1|6 100[3
2 -1 3|11 ™ o1 of1
-1 3 4|38 00 1|2

Notice that A has been replaced with the ld@ﬂh*\/ VV\0dT|X . This will always happen if there
isa UV\IQIUG 90|uh0ﬂ to the system. If not, then the matrix takes a different form.
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Example2 Solve
5r —3y+ z=-5
20+ y+32=9
Tr —2y+4z =12

5 =3 1| -5 . 1 0 1041]0
2 1 3|9 =, 0 1 13/11]0
7 —2 4] 12 00 0|1

Last line implies 0 = 1, wiich is impossible, so no solution.

Example3 Solve
5z — 3y + z= -5
20+ y+32=9
Tr—2y+4z=4

5 =3 1|5 . 1 0 10/112
2 1 3|9 =, 0 1 13/u1|5
7 -2 4| 4 00 00

The sysfem is il consistent; but doesn't specify a unigque solution, so infinitely many
solutions.

Determinants

An important property of a 9quar€/ W\QTHX is its d@f@rW\IV\aVﬁ . It is denoted by

V@H’lom |Iﬂ65 replacing the brackets around the matrix. The d@fﬁrW\lmVﬂ' of a matrix
A can be written !A! or det(A) .

The determinant of a 2 X 2 matrix is given by

The determinant can be found for larger n x n matrices, but becomes much more complicated. It
is much easier to find using a calculator.
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Example4 Find the following determinants.

-3 2 -1 —4

‘4 _1‘_—3(—1)—2-4 ‘3 2‘_—1-2—(—4)-3
=3-38 = —-2+12
— -5 =10

The following result is particularly useful for linear systems.

A linear system, written in the matrix form AX = B,

has a _UNique solution _ iff
[A]#0

Example5 Confirm the nature of the solutions for the systems in the earlier examples.

For example |
1 1 1
2 —1 3|=-19 —  Unique solution
-1 3 4

For examples 2 and >
5 =3 1
2 1 3/=0 —> 1o Unique solufion
7 =24
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111 Introduction to Sequences and Series

Sequences

A SGQUGV\OG is a collection of mathematical objects (in this class, numbers) in a specific

Ordﬁr . Unlike in 561'5 , the numbers in a SGQUGV\C'@ may be F@EG&T@Q .

Example1l The sequence of all positive odd integers less than 20, in descending order, is

19,17,15,13,11,9,7,5,3, 1

The individual entries in a sequence are known as f@FVV\S . Each T@H’V\ can be identified

using a lower case letter (we'll typically use _( ) with a SUbg(‘JHP* indicating its position in
the sequence.

Example 2 Find each of the following for the sequence above.

CL1:19 &3:15 CL6:9 CL10:1

If a sequence ends after a certain number of terms, it is ‘FW\H@ . Otherwise, it is lﬂﬁlﬂﬁ'ﬁ .

While any numbers can be placed in an order to form a sequence, we're particularly interested in

sequences which can be formed using a FU|6 .

Explicit Rules

An GX'VH(‘JH’ FU|6 calculates the value of each term using its position in the sequence.

Example3 Calculate the first 6 terms of the n calculation Qp,
sequence an:n2—|—1_ 1 (1)2 +1 9
2 (2)?+1 5

2,5,10,17,26,37, ... 3 (3)? +1 10

4 (4)*+1 17

5 (5)*+1 26

6 (6)*+1 37
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Recursive Rules

The word _OCUIGION  refers to definitions or processes which refer to themselves in some way.

A _eOUrsive FU|6 calculates the value of each term using the values of the previous term,
or possibly multiple previous terms.

If we think of a,, as the Ourrﬁlﬂf term, then a,_1 is the EF@VIOUS term, and an41 is the
V\@Xf term.

These rules require at least one b()k% Cose , a term that isn’t defined VGOUFS|V6|\'/ .

Example4 Calculate the first 6 terms of the n calculation “
sequence a, = 2a,_1 — 3, with a; = 5. n
1 5

5,7,11,19, 35,67, .. . 2 2(5) — 3 7

3| 2 —3 |11

s | 201 =3 |19

5 | 2(19)—3 | 35

6 | 2(35)—3 | 67

Example 5 List the first 10 terms of the Fibonacci sequence, defined as f, = fn_2 + fn—1, with
fi=fo=1.

1,1,2,3,5,8,13,21,34,55, . ..

Types of Sequences

An (AFIW\VV\(ZJHO 56@“6“06 has a constant dl‘F‘Fﬁrﬁﬂoﬁ between consecutive terms:

d = Ap+1 — Ap

A QGOW\GTHC %qu{’/lﬂc@ has a constant mJﬂO between consecutive terms:

o Anp+1
Qp
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Example 6 Determine whether the following sequences are arithmetic, geometric or neither.

1,5,9,13,17,21, ... ortfhmetic, as d = 4
12,6,3,1.5,0.75,0.375, . .. geometric, as r = 1
1,2,6,24,120,720, ... neitner, 0s 6 —2#£2—1,5 42
8,8,8,8,8,8, ... botin, as d =0,r =1

Sums and Sigma Notation

Recall that the _ SUM  of a collection of numbers is the result obtained by addlﬂgl them.

Example7 Find the sum of 2, 4, 6, 8, 10 and 12.

2+4+6+8+10+12=42

We can write this sum more concisely using the upper case Greek letter SIQHMQ , 2.

6
Z 2 = 42
k=1

e Below X, we have the Iﬂd@Xllﬂ@ VQHQH@ , k, and its SJFQFJF V0k|U6 1.

o Above X, we have the Bﬂd V0£|UG of the indexing variable, 6.

o After 3, we have the quantity to be summed, which is dOUbI@ the indexing variable in

this case.
5

Example8 Evaluate Y k2.
k=1

ot

Zk2:12+22+32+42+52
k=1
=14+4+9+16+ 25

= 95
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Example9 Write 5+ 10+ 154 20 + - - - + 100 using sigma notation.

20
j{:5k
k=1

Series

A _SBFIBS s the sum of the first n terms of a sequence!, which can be written as

n
Sn, — E ay
k=1

=ay+ay+---+ay

Example10 For a,, = 3n + 5, find Sg.

n calculation an Sh
1| 31 +5 8 | 8
S = 148 2 3(2)+5 11 ] 19
3| 3(3)+5 | 14 33
4| 3@)+5 |17 50
5 | 3()+5 |20 70
6 | 3(6)+5 | 23] 093
7 3(7)+5 26 | 119
s | 3(08)+5 | 29 |148
Ezgn;zle 11 For a, = 4a,_1—7 with a1 = 3, n caleulation a, S,
1 3 3
2 | 4(3) -7 5 | 8
S = 239 3 4(5) — 7 13 | 21
s | 4(13)—7 |45 66
5 | 4(45)—7 | 173239

!'Mathematicians usually call this a partial sum, and reserve the word series for an infinite sum.
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11.2 Arithmetic Sequences and Series

Recall that an arlJfVWV\@hO 56@“6“06 has a constant d|‘ﬁC€/r@V\C€ between consecutive

terms:

d= anp4+1 — Ap

The recursive rule for an arithmetic sequence with difference d is

ap = Qp—1 + d

Example1l Find the recursive rule for the sequence 5,2, —1, -4, —7,...

ap = Ap—1 — 3: a; =95

Example2 An arithmetic sequence begins with —2 and 4. State its recursive rule and find the

first 8 terms of the sequence.
d — 6 : an — (117’)/71 + 67 (1/1 — _2

—2.4,10,16,22,28, 34, 40, . ..

We can use the recursive rule repeatedly to find expressions for the terms following a.

a2:a1+d a3:a2+d a4:a3+d a5:a4+d

= a1+ 2d = a1 + 3d = a1 + 4d

The explicit rule for an arithmetic sequence with difference d and first

term a; is

a,=Mn-—1)-d+ a;

The related function f(n) = a, is _lnear .
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Example3 Find the 50th term of the sequence 1,5,9,13,17,...

ap=1, d=4 = a,=(n—-1)-4+41

Example 4 In the sequence a, = an,—1 — 9, a1 = 500, which term is equal to 2217
d=-9 = a, = (n—1)-(=9)+ 500 = 221
—9(n —1) = —279
n—1=31
n =32

So e 2Ind ferm of the sequence is 22|

The finite series of an arithmetic sequence given by a,, is

S, =n-
2

Example5 For a, = a1 — 4, a1 = 88, find the sum of the first 40 terms.

— 0
d 4 Sy = 40 - di —|—2a4
88 — 68
a, = (n—1)(—4) + 87 =40 2
as0 = 39(—4) + 88 =40 - 10
— 68 = 400

Example 6 Find the sum of the odd numbers between 0 and 200.

—1 d= 1+199
aq 1, d 2 Sl()() — 100 - +
4, =(n—1)-2+1 =199 o 1002
2(n — 1) = 198 B 10060
n—1=99 B
n = 100
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11.3 Geometric Sequences and Series

Recall that a @GOW\&L\FIG S@&jU@V\G@ has a constant mﬂO between consecutive terms:

Unp+1
Qanp,

The recursive rule for a geometric sequence with ratio r is

Ap =T Up-1

Example1 Find the recursive rule for the sequence %, %, 2,12,72,...

an ::6an717 ap = g

Example2 An geometric sequence begins with —2 and 4. State its recursive rule and find the first

8 terms of the sequence.
r=—2 — a,=—2a,-1, a1 = —2

—2.4,-8,16, —32, 64, —128, 256, . . .

We can use the recursive rule repeatedly to find expressions for the terms following a.

Ao =T+ as =T - a9 aqg =T -as as =T - Qq

2 3 4

=7r -a =T -a =Tr -a
The explicit rule for a geometric sequence with ratio r and first term a4

1S

The related function f(n) = a, is 6X'V0ﬂ€ﬂﬁ0kl :
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Example3 Find the 12th term of the sequence 640, 320, 160, 80, ...

ay = 6407 r = % — q, = 640 - (%)n—l

_ N5
— a12—640-(§) = =
Example4 Which term of the sequence a,, = 5a,_1, a1 = 3 is the first to be greater than 1 billion?

r=>5=— a,=3-5"">10

o 9
5n 1>1%

n—1>log; () = 12.19

n > 13.19
ap, = 3.662 x 10°

The finite series of a geometric sequence given by a,, is
1 —

Sn: )
S 1 —7r

Example5 For a, = %an_l, a1 = 100, find the sum of the first 8 terms.

1
r=s3

1—(3)°
5*10_100-J

Example 6 If the sum of the first 4 terms of a,, = 3a,_1 is 480, what are those 4 terms?

r=3
1—3
54:a1- 1-3
= 40a; = 480

a1 — 12, a9 — 36 ag — 108, ay4 — 324
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12.1 Statistical Concepts

In the field of statistics, a Var|ab|6 is a characteristic of a person or thing, which can have
different values for each person or thing. A recorded value of a variable is called a dOd'UVV\ , the
plural of which is daf& . The two main types of variables are

. qumﬂfaﬁv& Varlabl% , whose data are numerical values for which it makes sense to

use with arithmetic operations, and

. OGTGQOHCOH V(AFIO&IOIGS , whose data place the people or things into groups or categories.

In this class, we’ll mostly focus on quantitative variables and data.

Example1l Decide if the following are quantitative or categorical.

e The salary of a software engineer. quam‘thG

e The fur color of a pet cat. GO&T@@OHGO\I

e The zip code of a customer. OQT@@OHOQ'

e The weight of a football player. quammh%

e The number of students in an Algebra 2 class. qu&ﬂﬂfaﬂ%

In this section, we’ll focus on UV\|VOWIOK1'6 dafa , which is data for a single variable.

A S*thhc is a single measure which summarizes a characteristic of a collection of data.

Measures of Central Tendency

A _MRASUre O‘F G@VﬂTOﬂ T@ﬂd@ﬂ@\/ is a statistic which uses a single number to represent

an entire set of data.

e The _MMEAN is the sum of the data values T = fofol — Z z
divided by their number: count n

e The M@dlaﬂ is the value in the W\lddl@ when the data are ordered, or the mean

of the middle two values.

e The W\Od@ is the VV\OST fma’u&l{ﬂ' value.
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Example2 Find the mean, median and mode of 2, 3, 3, 3, 4, 7, 7 and 11.

243+3+3+4+7+7+11

mode, = 3 = 3
—~
2,3,3,3,5,7,7,11 _ 40
—~ -8
medion = 3.5 _5
Measures of Spread

A _Measure O’F SIVFGM is a statistic which indicates how far the data d@VIQ‘i’@S from
the _CRNTRL .

e The V(AHGV\O@ measures spread using the 2 Z($ - j)z

differences of each value from the mean, and is n—1
calculated with the formula:

e The Smﬂdard d@VlﬂhOﬂ is the square root
of the _VAIIANCL , and is used more often as
it shares the same UHH’S as the data:

e The mlﬂglﬁ is the difference between the smallest and largest values.

e The |Nﬁrduarh|6 raﬂﬂﬁ l@K is the difference between ()1 and @3, which are

the medians of the lower and upper halves of the data respectively.

Example3 Find the standard deviation of the values in the previous example.

T r—z | (x—1)°
2 -3 9
Z(g; — 3 —9 4
3 —2 4
3 —2 4
4 —1 1
—\\ 7 7 2 4
= 3.071 7 2 4
11 6 36
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Skewed Distributions

Examining a hleO@]mW\ representing a set of univariate data can reveal characteristics of the
data.

If the bulk of the data is situated toward one end of its range, the data is said to be SkGWGd .
The direction of the 5k6Wﬂ655 is the same as the direction of the distribution’s 'mll .

positively skewed symmetric neqatively skewed
or right-skewed not skewed or left-ckewed
mean > median mean ~ medion mean < median

The IMEAN s affected by skewed values more than other measures of central tendency, so the
relationship between MEAN  and W\Gdlaﬂ can indicate the direction of any skewness.

Unimodal and Multimodal Distributions

Data distributions can also be characterized by the number of E@ng . It is typical to use the

suffix VV\OQOH to refer to these, even if the peaks do not have the same height, and therefore do
not strictly meet the definition of the VV\Od .

unimodal bimodoal frimodal

Distributions with more than one peak can also be called VV\UH'IVV\Odal .
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12.2 Normal Distributions

A V\OFVV\OH dISJWlbUhOV\ is a type of probability distribution. Each normal distribution is
defined by two _POIAMETRIS .

« The _ME&AN , represented by p (lower case Greek letter mu).

e The Sfaﬂdard d@VIQ‘hOV\ , represented by o (lower case Greek letter sigma).

The normal distribution can be graphed using a V\OFIMOH CUrVE , which is sometimes called a

b@” -shaped curve. The area under the curve can be interpreted as probabilities in the related
normal distribution.

34% 34%

e The distribution is UV\IVV\Od(AI , as it has one mode at the Mmean .

e The distribution is S\I/VV\W\GTHC/ about the _M&AN . EO% of the area is less than
the _IMEAN , and EO% is greater than the mean .
e The 68-95-99.7 rule states that

o about bg% of the area is within _O/'Y® standard deviation of the mean,
o about qg% of the area is within 1’\/\10 standard deviations of the mean, and
o about qq/‘% of the area is within TW% standard deviations of the mean.
If a univariate data set is UV“VV\OdaI and S\IIVV\VV\GJFYIO , then it may be appropriate to use

a normal distribution to W\Od@' the data. We can fit the distribution to the data by choosing

parameters
U==x og=S
Note the different symbols for mean and standard deviation. While we often choose them to have

the same values, they have different meanings. & and s are the 910119“09 calculated from the
dm , while ;4 and o are the 'Vamv\/\ﬁfﬁrs of the distribution.
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If X is a random variable, then we can use the notation

Pla < X <b)

to represent:

e The PFOPOFﬂOV\ of individuals whose values which fall between a and b.

e The ?rObabthf\/ that an individual chosen at random has a value between a and b.

Example1 The heights of a group of students are normally distributed with a mean of 5 ft 9 in
and a standard deviation of 1.5 in.

a) Find the proportion of students whose heights
are between 5 ft 7.5 in and 6 ft.

Let X be the height of a student.

. . 34% | 34%
@t=69in o =1.5in

P(67.5 < X < 72) = 68% +13.5% 64.5 66 675 69 70.153.5(7;2 73.5
= 81.5%
b) Find the probability that a randomly chosen
student is taller than 5 ft 6 in. \
P(X > 66) = 13.5% + 34% + 50% o0%
= 97.5% 34%
13.5%

645 66 675 69 705 72 735

Example2 In a normally distributed data set, 84% of the data values are less than 29, and 2.5%
of the data values are less than 17. What are the mean and standard deviation?

w—+o =29
w—20 =17 A

Subtracting the equations gives 30 = 12

— 25% —

17 29
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12.3 Bivariate Data

When data is collected for two variables from the same set of subjects, it is called

blVO\FIOﬂ'@ dm’a . In these cases, our interest is in knowing if there is an O«SSOGlaﬂOV\

between the variables, which means that changes in one variable tend to occur with changes in the
other.

Review of Regression

A key tool we have for examining bivariate data is r@@i’ﬁ%wl’\ , as we’ve studied previously.
While we’ve used |IV\€0W , quadeﬂO and GX,VOVNGI/NMI regression, and we’ll continue

to restrict ourselves to those three for this class, regression is possible using any type of function
for which an association could exist.

Recall:

« The aim of _{®AIBSSION s to find a _TUNCHION  whicn _IM0deIs an _association

between variables.

e The C/O@‘FﬁCAGN O‘F d@f@FW\W\O&hOV\ , denoted by R2 , is a number between 0 and
1 indicating how well the VV\Od6| fits the data, with R2 =1 indicating a perfect fit.

e The 00W6|0d’|0lﬂ CO@‘F‘HCI@N ,‘denot‘ed by _ T, is a number between —1 and 1 which
indicates the STYGV\@M and le@OﬂOl’\ of the linear association between the two

variables. For linear regression, R2 — 7“2 .

Examplel Find a function to model the data below.

y | 5:0 | 4:3 | 3:9 | 3:7 | 41 | 5:0 | 6:3
Shape formed by points suggests quadratic.
Using quadratic regression,

R* =0.992 indicates good fit
f(x) = 0.842% — 3.82x + 8.06
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Correlation and Causation

COFF@MﬂOV\ measures a linear relationship between variables by indicating how one variable
changes as the other variable increases.

If increases in one variable sees proportionally similar INCreaseS — in the other, there is a
STFOV\@ POSH]V@ OOFF@WIOV\ between the variables, and r is close to | . If increases in

one variable sees proportionally similar d@GVGO&S@S in the other, there is a
SJWOV\@] mgaﬂv& OOW@|0&1’|OV\ between the variables, and r is close to —1 .

both cases, there is a SWOV\@ ||V\60kr QSSOOIQ‘hOV\ between the variables.

sfrong Weak Weak Sirong
neqoative neqative no posiive posiive
correlation correlation correlation correlation correlation

—1 —0.5 0 0.5 1

Suppose that there are two variables, X and Y, which have a SWOV\@ ,VOSH'IVG 00rr€|0d’|0ﬂ .

As stated above, this means that as X increases, Y also increases at a proportionally similar rate.
This does not mean, however, that an increase in X COUSES  an increase in Y. There are
actually three possibilities:

o Changes in X do indeed CauSe changes in Y.

e The causation is r6V6r9€/d , and changes in Y CauSe changes in X.

e Changes in X and Y are both OQUS@Q by changes in a ﬂ/\lrd Varlablﬁ .

Not understanding this (or deliberately ignoring this) leads many people to make 100t|§6 CIQIW\S
not supported by the data. As you hear or read statistical conclusions made by others, or are trying
to draw your own conclusions, it is vital to remember this principle:

Correlation vs. Causation

Correlation does ot imply causation.
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Example 2 This graph and the Life Expectancy vs. Broadband Internet
correlation coefficient r = 0.7485 show Subscribers by Country, 2017
9

that there is a fairly strong positive
correlation between the number of 0
broadband internet subscriptions in a ?80
country and the life expectancy in that %f 0
country. :o}
M 60
Is it reasonable to say that if a &
country wants to raise life expectancy, =50 | | | | | |
they should improve their internet 10 20 30 40 50
infrastructure? Broadband Subscribers per 100 People
Sources:

https://data.worldbank.org/indicator/IT.NET.BBND.P2
http://gapm.io/ilex

No, as the correlation does not imply that broadband infernet causes an improved
ife expectancy. I is wmore likely that increases in both variables are caused by
Increases in e wealth of the country.

Discrete and Continuous Models

A quantitative variable which can take only distinct, countably-many values is called dlSCF@T@ .

These values generally arise from a COUVﬂ'II/\gI process.

A quantitative variable which can take any value within an interval is called OOVﬂ'lI/\UOUS .
These values generally arise from a W\GQSUHV\@ process.

Distinguishing between the two is important for deciding how to create graphs modeling the
variable.

Example3 A local car dealer promises to sponsor the high school softball team $500, plus $150 for
each run they score in the next game, up to a total sponsorship of $2000. Create a graph relating
sponsorship money to runs scored.

Ty
Independent Variable: 'UNS scored 20001 ® bl o
Dependent Variable: SPONSOrshlp Money Lsoo | o’
’ °
Discrete/Continuous: discrete 3 ]
N 1,000 | 5

Domain: {O, 1,2,.. } Py
Function: 500 & ?

150z 4+ 500 x=0,1,...,10
fla) = B | | z

2000 v=11,12,. .. ; - "
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124 Collecting and Presenting Data

The aim of 51'0&1151105 is to understand JWHW\S about the world through the collection and

interpretation of dafa . Every day, people form b@h@‘?g and make d60|5|0ﬂ5 based on
the data that have been presented to them.

Unfortunately, data can be 00”60de in ways that make them Uﬂr6|la|9|6 , or can be
PF@S@N’@d in ways that are M|S|€adlﬂ@ . While some people will VV\OW\I'VUMTG data

in these ways deliberately, it is very easy to aOCIdGVﬁ'a"\/ misuse data. Knowing how data can

be misinterpreted helps us to avoid being d@(‘/@N@d by claims made by others, and to better
Uﬂd@rﬁ'&ﬂd the data we collect ourselves.

Populations and Samples

If we're interested in data regarding a particular class of people or things, the ?OPUMﬂOV\ is
the entire set of people or things in that class.

Example1l A medical researcher is collecting data about the weights of 15 year olds in Oklahoma.
What is the population?

The population is the set containing every b year old in Oklahoma.

If data are collected from every individual in the population, the process is called a ceNnsusS .
This is ideal, as we know that the data truly represents the entire population. However, doing so
is often impractical.

Instead, data are typically collected from a SQW\E l@ , which is a subset of the population which

is intended to represent the entire population. The sample should contain a |0th|6 number of
individuals to minimize the effect of random variation.

There are many different methods to select the sample, with varying quality. Here are a few
common sampling methods:

e A SIW\IV|6 mlﬂdOVV\ SOWV\'V|6 selects the members of the sample from the entire

population at random. This is usually best practice if possible. This can be as simple as
drawing names from a hat, or can be done by assigning numbers to each individual and using
a random number generator.

e A 51Tahﬁ€/d SQW\'VIG places individuals into groups, then randomly selects members

from every group. This ensures that every group is represented in the sample.

e A O|U91’6r€d SOKVV\'Vl@ places individuals into groups, then selects every member from
randomly selected groups. This is often easier to administer, while still containing some
randomness in the sample.
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e A VO|UNQW FGSVOI/\SG 90&W\V|6 selects individuals who are willing to participate

in a survey. Sometimes this is the only way to collect data, for legal or ethical reasons, but

may introduce SQVV\'M@ |9|0k§ .

. A _CoONhvenence SQW\VB selects the individuals who are easiest to collect data from.

This almost certainly introduces SQW\V|€J bIGS While this is a popular method because
it is easy, informed statisticians should not use it.

Any factor that affects the data in a way such that they do not represent the true state of the
population is called a bldS If the source of the bIGS is the way the sample was selected, it
is called SOWV\VIG IQWS Other blﬂS@S include ObS@FV@F IQWS , which is where the

presence of an Ob%FV@F affects the behavior or response of individuals in the sample.

Example2 A business manager at a large company is concerned that many of her employees are
spending a lot of time using social media when they should be working. She asks her assistant
manager to conduct some research. He asks the first five people into the office the next day how
much time they’ve wasted on social media. He reports to his boss that there is no social media
problem at the company.

Are there any issues regarding the data collection in this scenario?

Small sample: In o large company, five people is not representative of e population
of employees.

Convenience sample:  The assistont manager didnt use rondom sampling af al. 1
may be fhe cose that fhese employees are earliest because they are relafively
busy, and have less fime 1o waste.

Observer bias: Employees are unlikely fo admit o management the amount of time
they've wosted online when fhey should have been working,

Recognizing Distorted Data Displays

Presenting data in a a |ﬂ is a useful way to communicate and emphasize aspects of the data
that are important to the author of the display. Unfortunately, it is possible to present data in

ways that, while not false, are M|5|ﬁad|ﬂ@ .

An important rule to remember when presenting data is the area WIV\GIVI@ This says that
if a quantity is represented by a two-dimensional region in a graph, the ar@a of the region

should be WOVOH’IOVW to the quantity.
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Example 3
This chart violates the O €0 V”V\CA |6 N
because the bars do not have the same Wldﬂ” 5] Company A is the fastest growing!

Even though Company A does have the highest
growth, the difference in growth aEEGQFS to

be much greater because the bar’s aea s
much greater.

Revenue Growth (%)

In general, the bars in a bar chart should all have

the same Wldﬂﬂ .

Companies

Example 4

This chart violates the Q00 PHV\UP'@ ,
because the 5‘7 6‘?‘?601' on the pie chart

causes some of the sectors to have additional

V|§|b|€/ area along the edge.

While they might look clever, using
517 G’F‘FGCTS in data displays should

always be QVOU@Q .

Example 5

This chart violates the A0 priﬂoilﬂﬁ
because the |6V\g|ﬂ/]5 of the bars are
not ,WO,VOH'IOVW to their corresponding

VQ'U@ . Even though Jones does have the
highest favorability, the difference in favorability
QEEGGFS to be much greater because the

bar’s _ A €A is much greater.

T Candidate Jones is far more popular!

Favorability Rating (%)

This occurs because the 500“6 on the

Garcia Jones Lee
y"aXE has been d|51'0r1'6d Political Candidate

A graph such as a line chart can also have a dleOﬁ'@d \/"aXB . In some cases, this is

|U9hﬁ6d when seeing trends and small changes is important, such as in ﬁmlﬂ(}lal OV\O&FTS .
In general, however, readers will expect a |IV\60&F scale beginning at 220 .
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