Algebra 2 Notes

Shaun Carter

v. 0.3 (March 25, 2020)

For Sarah, who proves every day that math equals love.

Copyright © 2020 Shaun Carter. All rights reserved.
Permission is granted to individual teachers to use this resource in their classes, and to distribute copies to their students for the purpose of instruction. Do not distribute otherwise without permission.

Downloads are freely available from https://primefactorisation.com/.

This resource is pre-release and is still a work in progress. All contents are subject to change. Use at your own risk.

Contents

1 Functions 5
1.1 Sets 6
1.2 Introduction to Functions 9
1.3 Inverse Functions and Solving Equations 12
1.4 Transformations 15
2 Linear Functions and Equations 19
2.1 Linear Functions 20
2.2 Inverses of Linear Functions 25
2.3 Systems of Linear Equations 27
2.4 Linear Regression 33
2.5 Piecewise Linear Functions 36
3 Quadratic Functions and Equations 41
3.1 Quadratics in Vertex Form 42
3.2 Quadratics in Factored Form 46
3.3 Review of Distributing and Factoring 48
3.4 Special Quadratics 52
3.5 Factoring Quadratics in Standard Form 56
3.6 Completing the Square 60
3.7 The Quadratic Formula 63
4 Further Quadratics 67
4.1 Complex Numbers 68
4.2 Quadratic Equations with Complex Solutions 72
4.3 Systems Involving Quadratic Equations 74
4.4 Quadratic Regression 77
5 Polynomials 79
5.1 Polynomial Concepts 80
5.2 Cubic Functions 82
5.3 Special Cubics 84
5.4 Polynomial Division 86
5.5 Factoring Polynomials 90
5.6 Graphs of Polynomial Functions 92
6 Rational Expressions and Functions 97
6.1 Simplifying Rational Expressions 98
6.2 Adding and Subtracting Rational Expressions 101
6.3 Complex Fractions 104
6.4 Rational Equations 106
6.5 Simple Rational Functions 108
6.6 Functions with Quadratic Denominators 112
7 Radicals and Rational Exponents 117
7.1 Radical Expression Concepts 118
7.2 Rational Exponents 121
7.3 Square Root Equations 124
7.4 Square Root Functions 126
7.5 Cube Root Functions 130
7.6 Quadratics, Cubics and Roots as Inverses 132
8 Exponential and Logarithmic Functions 135
8.1 Exponential Functions 136
8.2 Logarithms 139
8.3 Logarithmic Functions 142
8.4 Natural Exponents and Logarithms 145
8.5 Exponential and Logarithmic Equations 149
8.6 Exponential Regression 151
9 Further Functions 153
9.1 Identifying Functions 154
9.2 Algebraic Combinations of Functions 156
9.3 Function Composition 158
9.4 Piecewise Functions 161
10 Matrices 163
10.1 Matrix Operations 164
10.2 Solving Linear Systems with Matrices 166
11 Sequences and Series 169
11.1 Introduction to Sequences and Series 170
11.2 Arithmetic Sequences and Series 174
11.3 Geometric Sequences and Series 176
12 Data and Statistics 179
12.1 Statistical Concepts 180
12.2 Normal Distributions 183
12.3 Bivariate Data 185
12.4 Collecting and Presenting Data 188

Chapter 1

Functions

1.1 Sets 6
1.2 Introduction to Functions 9
1.3 Inverse Functions and Solving Equations 12
1.4 Transformations 15

1.1 Sets

A \qquad is a collection of mathematical objects. In this class, it will almost always be a collection of \qquad . Sets are usually represented by \qquad variables.

Sets can be defined as a list of values, or by using a rule, notated by \qquad .

Example 1 If set A contains only the values $1,2,3,6,8$ and 9 , then

If set B contains all values greater than or equal to 6 , then

Note that either : or | can be used in set notation. If reading aloud, say " \qquad ".
$x \in S$ says that the value x \qquad the set S, or x is \qquad S. $x \notin S$ says the opposite: the value x is \qquad the set S.

Example 2 Using the definitions of A and B above, write \in or \notin.

1	A	4	A	6	A	7	A	5.9	A	8.1	A
1	B	4	B	6	B	7	B	5.9	B	8.1	B

Symbols for Special Sets

$\left.\begin{array}{|c|c|c|c|}\hline \text { Typed } & \text { Written } & \text { Name } & \text { Description } \\ \hline \varnothing & & & \text { The set that contains no elements at all. }\end{array}\left|\begin{array}{c}\text { The set of numbers }{ }^{1} \text { used for counting. } \mathbb{N}=\{1,2,3, \ldots\}\end{array}\right| \begin{array}{c}\text { The set containing all the natural numbers, their } \\ \text { negative counterparts, and } 0 . \\ \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}\end{array}\right]$

[^0]Combining Sets
$A \cap B$ is the \qquad of A and B. It is a set that contains all the elements that are in both A and B.
$A \cup B$ is the \qquad of A and B. It is a set that contains all the elements that are in either A or B.
$A \backslash B$ is the \qquad of A and B. It is a set that contains all the elements that are in A but not in B.

Example $3 C=\{1,5,7,10\}$ and $D=\{4,5,6,7,8\}$
$C \cap D=$
$C \cup D=$
$C \backslash D=$
$D \backslash C=$

Interval Notation

An \qquad is a special type of set which contains all real numbers between a \qquad
\qquad , a, and an \qquad , b.
$[a, b]$ represents an interval with bounds which are \qquad . (a, b) represents an interval with bounds which are \qquad . ($a, b]$ and $[a, b)$ can be used when the bound types are mixed.

On number lines and graphs, an included bound is represented by a \qquad , and an excluded bound is represented by an \qquad .

Example 4

If a set consists of \qquad intervals, the \qquad symbol can be used to include them in the same set.

Examples:

If a set contains all real numbers \qquad values, there are multiple options for notating the set.

Example 5 The set containing all real numbers except 2 and 5 is

Interval Notation	Set Notation	Set Difference

Comparing Sets

If every element in a set U is also in another set V, then we can write $U \subset V$. We say that U is a
\qquad of V, and that V is a \qquad of U. We can also say that V \qquad U.

Example 6 Let $A=\{-1,2,3,4\}$ and $B=\{-1,2,3,4,5.5,7\}$.

Set Relation	T/F	Reason
$A \subset B$		
$B \subset A$		
$A \subset \mathbb{N}$		
$A \subset \mathbb{Z}$		
$B \subset \mathbb{Z}$		
$A \subset[-1,4)$		
$B \subset[-1,7]$		
$[-1,4) \subset[-1,7]$		
$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$		

1.2 Introduction to Functions

A \qquad is a collection of ordered pairs which represents a relationship between two sets of real numbers. Each ordered pair is typically labeled as (x, y).

The first set, which contains all x-values, is called the \qquad . The second set, which contains the y-values, is called the \qquad .

A \qquad is a particular type of relation. In a function, each value in the domain is
\qquad related to a value in the codomain. In other words, for each x, there is
\qquad y related to it.

To say that a function f relates a domain A and a codomain B, we write
which can be read aloud as \qquad .

The relation between x and y is written as

The \qquad (or image) of a function is the \qquad of the \qquad that contains the values that are actually produced by the function. We can think of the domain as the \qquad of the function, and the range as the \qquad of the function.

Example 1 Find the domain, codomain and range of the function, and find the value of $f(x)$ for each value x in the domain.

Example 2 Explain why the following relation is not a function.

One-to-One and Many-to-One Functions

For every function, each x-value in the domain maps to a unique y-value in the range. It is not necessarily true that each y-value is mapped to by a unique x-value.

In a \qquad , each y-value in the range is only mapped to by one x-value in the domain.

Equivalently, $f(a)=f(b)$ if and only if $a=b$.

In a \qquad at least one y-value in the range mapped to by more than one x-value in the domain.

Equivalently, there is an a and b in the domain such that $f(a)=f(b)$, but $a \neq b$.

Function Evaluation

To \qquad a function means to determine the value of $f(a)$ for a given value a in the domain. If a is not in the domain, then $f(a)$ is said to be \qquad .

Example 3 The function f is defined by the table shown.

x	$f(x)$
-3	4
-2	3
-1	0
0	1
1	-1
2	5
3	2

The domain of f is
The range of f is
The relation type of f is
$f(2)$

$$
\begin{align*}
& f(-2)+f(2) \tag{4}\\
& 2 f(-3)-5 f(0) \\
& f(f(1)) \\
& f(f(f(-2)))
\end{align*}
$$

Example 4 The function g is defined by the graph shown.

The domain of g is
The range of g is
The relation type of g is
$g(3)$

Example 5 The function h is defined by the graph shown.

Example 6 The function j is defined by the graph shown.

$j(7)$
j (6)

1.3 Inverse Functions and Solving Equations

Suppose we have a \qquad which consists of a collection of ordered pairs in the form (x, y). Its \qquad is the relation whose ordered pairs are switched to be (y, x).

Recall that a \qquad is a special type of relation. If the \qquad of a
\qquad is also a \qquad , it is called the \qquad .

If a function is denoted \qquad its inverse function, if it exists, is denoted \qquad .

Properties of Inverse Functions

If function f has the inverse function f^{-1}, then

- The inverse function of \qquad is \qquad .
- The \qquad of f^{-1} is identical to the \qquad of f.
- The \qquad of f^{-1} is identical to the \qquad of f.
- As the inverse function results from switching the x and y
 values, the \qquad of $y=f(x)$ and $y=f^{-1}(x)$ are
\qquad or \qquad of each other
across the line \qquad .

Condition for Inverse Functions

Suppose function f is defined by the following table, and suppose f^{-1} is its inverse function.

x	1	2	3
$f(x)$	7	8	7

What is $f^{-1}(8)$?
What is $f^{-1}(7)$?
Because $f^{-1}(7)$ has \qquad values, f^{-1} is \qquad . This has happened because f is a \qquad function. Therefore,

Theorem

A function f has an \qquad f^{-1} if and only if f is a \qquad function.

Example 1 The function f is defined by the table shown.

x	$f(x)$	The domain of f is	x	$f^{-1}(x)$
-3	4	The range of f is		
-2	3			
-1	0	The inverse function f^{-1} \qquad exist because the function is		
0	1	The domain of f^{-1} is		
1	-1			
2	2	The range of f^{-1} is		

Example 2 The function g is defined by the graph shown.

The domain of g is
The range of g is
The inverse function g^{-1} \qquad exist
because the function is \qquad .

The domain of g^{-1} is
The range of g^{-1} is
$g(1)$
$g(6)$
$g^{-1}(5)$
$g(7)$
$g^{-1}(8)$

Solving Equations using Inverse Functions

Recall that we can use \qquad to solve equations. If an equation contains a the equation.

If a solution \qquad this method will ensure that it is \qquad . If the equation requires
applying the \qquad to a value for which it is \qquad , then the equation has \qquad .

Example 3 Solve the following equations using the table defining f.

x	-3	-2	-1	0	1	2	3
$f(x)$	4	3	0	1	-1	5	2

$2 f(x+3)-4=6$
$\frac{f(5 x)-1}{3}=2$

Solving Equations with no Inverse Function

If an equation contains a \qquad , it may still be possible to solve the equation. However, the solution may not be \qquad .

Example 4 Solve the following equations using the table defining g.

x	-3	-2	-1	0	1	2	3
$g(x)$	3	2	1	3	2	1	3

$3 g(x-5)+2=8$

$$
\frac{g(x)+7}{2}=5
$$

1.4 Transformations

A \qquad is a \qquad which, when applied to a \qquad produces
an \qquad of the figure with each point changed in a prescribed way.

In this class we'll consider transformations of \qquad of functions and how they change the function \qquad .

For the following examples, we'll use the function f, as defined by this graph and table:

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	-2	-1.5	-1	-1	1	3	2	1	2

Reflections

A \qquad is a transformation which creates a \qquad across a
\qquad . Each point in the image remains the \qquad from this line, but on the \qquad -

Example 1

$$
g(x)=f(-x)
$$

x									
$-x$	-4	-3	-2	-1	0	1	2	3	4
$f(-x)$ $g(x)$									

Each x-value \qquad . Each y-value \qquad .

The graph has been \qquad .

Example 2

$$
g(x)=-f(x)
$$

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$									
$-f(x)$ $g(x)$									

Each x-value \qquad . Each y-value \qquad -

The graph has been \qquad .

Stretches and Compressions

A \qquad or \qquad is a transformation where each point's distance from a
\qquad is multiplied by a \qquad -

If each point gets \qquad the fixed line, the transformation is a \qquad . If each point gets \qquad the fixed line, the transformation is a \qquad -.

Example 3

$$
g(x)=f(2 x)
$$

x									
$2 x$	-4	-3	-2	-1	0	1	2	3	4
$f(2 x)$ $g(x)$									

Each x-value \qquad . Each y-value \qquad .

The graph has been \qquad by a factor of \qquad -.

Example 4

$$
g(x)=3 f(x)
$$

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$									
$3 f(x)$ $g(x)$									

Each x-value \qquad .

Translations

A \qquad or \qquad is a transformation where every point in the image is moved
\qquad in \qquad .

A translation can be \qquad , or \qquad , or a combination of directions.

Example 5

$$
g(x)=f(x-2)+5
$$

x									
$x-2$	-4	-3	-2	-1	0	1	2	3	4
$f(x-2)$ $g(x)$									
$f(x-2)+5$ $g(x)$									

Each x-value \qquad .

Each y-value \qquad .

The graph has been \qquad and
\qquad .

Combining Transformations

Example 6

$$
g(x)=2 f[-(x+3)]+2
$$

x									
$x+3$									
$-(x+3)$	-4	-3	-2	-1	0	1	2	3	4
$f[-(x+3)]$									
$2 f[-(x+3)]$									
$2 f[-(x+3)]+2$									
$g(x)$									

The graph has been:

- \qquad across the \qquad ,
- \qquad from the \qquad
by a factor of \qquad ,
- \qquad by \qquad units, and
- \qquad by \qquad units.

When listing transformations for the usual form $g(x)=A \cdot f[n(x-h)]+k$, translations should always be listed \qquad reflections and dilations.

Summary of Transformations

$y=A \cdot f(x)$	reflect across the x-axis if \qquad stretch from the x-axis by a factor of $\|A\|$ if \qquad compress toward the x-axis by a factor of $\frac{1}{\|A\|}$ if \qquad
$y=f(n \cdot x)$	reflect across the y-axis if \qquad stretch from the y-axis by a factor of $\frac{1}{\|n\|}$ if \qquad compress toward the y-axis by a factor of $\|n\|$ if \qquad
$y=f(x-h)+k$	translate $\|h\|$ units right if \qquad left if translate $\|k\|$ units up if \qquad , down if

Chapter 2

Linear Functions and Equations

2.1 Linear Functions 20
2.2 Inverses of Linear Functions 25
2.3 Systems of Linear Equations 27
2.4 Linear Regression 33
2.5 Piecewise Linear Functions 36

2.1 Linear Functions

A \qquad is a function with the algebraic form
where m and b are constants.
This corresponds to the \qquad of a linear relation, named because the graph of the function is a \qquad where m is the \qquad of the line and b is its
\qquad _.

If a function is defined by an \qquad , the function is evaluated by \qquad the appropriate value from the \qquad into the rule, and calculating the result.

Example $1 f:[-3,6) \rightarrow \mathbb{R}$, where $f(x)=-2 x+8$.

$$
f(-3)
$$

Graphing Functions

A useful tool to \qquad a function is its \qquad .
The graph consists of a \qquad ${ }^{1}$ drawn on a
\qquad , or \qquad ${ }^{2}$.

If x is in the \qquad of the function f, then the
\qquad ($x, f(x)$) will be part of the curve.

Example 2 Plot the function f from Example 1 on the coordinate plane to the right.

[^1]
Implied Domains

It is common practice to state only the rule of a function, without stating the domain. In these cases, it is reasonable to assume the \qquad , which is the \qquad domain for which the function can be \qquad .

For a \qquad , the implied domain is \qquad , because

Sketching Linear Functions

A \qquad is a version of a graph that shows only the \qquad . In the case of a linear function, the information that should be included is:

shape of curve	
x-intercept	
y-intercept	
endpoints	

Example 3 Sketch $f(x)=4 x+6$.
Shape:
x-intercept:
y-intercept:
endpoints:

Example 4 Sketch $g(x)=-\frac{1}{2} x+1$ on the domain $[2, \infty)$.
Shape:
x-intercept:

y-intercept:
endpoints:

Note that it is a good idea to include at least two points so the slope of the line is clear.

Example 5 Find the range of $h:(-1,5] \rightarrow \mathbb{R}$ where $h(x)=-2 x-3$, and sketch the graph of $h(x)$.
Shape:
x-intercept:

y-intercept: endpoints:

The Linear Parent Function

For any given function, its \qquad is the simplest function of the same type.

parent function
domain
range
relation type
x-intercept
y-intercept
slope

Transformations of Linear Functions

Recall that $g(x)=A f(x)+k$ represents a \qquad or \qquad from the x-axis if
$|A| \neq 1$, a \qquad across the x-axis if A is negative, and a \qquad up or down.

If we let $A=m, k=b$, and $f(x)=x$, then $g(x)=m x+b$, the general form of linear functions. This gives us the following result:

Theorem

Every \qquad , $g(x)=m x+b$, is the result of a \qquad
applied to its \qquad ,$f(x)=x$.

Example 6 Write the transformations needed to obtain $g(x)=-2 x+5$ from its parent function.

Example 7 The graph of $y=x$ is compressed by a factor of 4 toward the x-axis, shifted 8 units left and shifted 7 units down. What is resulting function in slope-intercept form?

Transformations do not need to be applied only to the parent function, but can be used with any function.

Example 8 The function $f:[-2,5) \rightarrow \mathbb{R}$, where $f(x)=2 x+4$, is reflected across the x-axis and shifted 3 units right. Find the resulting function g in the form $g(x)=m x+b$.

Find the new domain:
Find the new rule:

Example 9 Find the transformations required to transform $f(x)=3 x+2$ to $g(x)=-6 x+5$.

2.2 Inverses of Linear Functions

Recall that a function has an if and only if it is a
\qquad -.

Since non-constant \qquad functions are \qquad (think about why this is true) we can conclude the following:

Theorem

Each \qquad , $f(x)=m x+b$, where \qquad ,
has an \qquad .

Finding the Inverse Function

Recall that the \qquad of a relation results from \qquad . For an algebraically defined function, we can find the inverse by following these steps:

1. Replace $f(x)$ with \qquad .
2. Rewrite the equation by \qquad .
3. Rearrange the equation so that \qquad .
4. Check that y is a \qquad ; if so, replace y with \qquad .

Example 1 Find the inverse function of $f(x)=2 x-7$.

Example 2 Find the inverse of $g:(-\infty, 0) \rightarrow \mathbb{R}$, where $g(x)=-\frac{1}{2} x-3$.

Example 3 Find the inverse of $h:[-1,2] \rightarrow \mathbb{R}$, where $h(x)=3 x+4$.

2.3 Systems of Linear Equations

A \qquad is a collection of multiple \qquad containing multiple
\qquad or variables. A \qquad to the system consists of values for the unknowns that satisfy all of the equations \qquad .

Example 1 Verify that $x=2, y=5, z=-3$ is a solution to

$$
\left\{\begin{aligned}
x+y+z & =4 \\
2 x-y-z & =2 \\
x+3 y+2 z & =11
\end{aligned}\right.
$$

Solving Systems of Two Equations Using Substitution

1. Choose one equation, and \qquad it to \qquad one unknown.
2. \qquad this equation into the other and \qquad for the remaining unknown.
3. \qquad this solution into the first rearranged equation to find the first unknown.
4. State the final solution for \qquad unknowns, by stating each value separately or together as an ordered pair.

Example $2 \quad\left\{\begin{aligned} x+2 y & =10 \\ 2 x-3 y & =6\end{aligned}\right.$

Example $3 \quad\left\{\begin{array}{l}2 x-3 y=-11 \\ 3 x-y=8\end{array}\right.$

Solving Systems of Two Equations Using Elimination

1. Choose one unknown you want to have \qquad . Make this true by
\qquad the equations by appropriate values.
2. \qquad this unknown by \qquad the equations.
3. \qquad for the remaining unknown.
4. \qquad this solution into one of the original equations to find the first unknown.
5. State the final solution for \qquad unknowns.

Example 4

$$
\left\{\begin{align*}
4 x+5 y & =-5 \tag{1}\\
-2 x-y & =7
\end{align*}\right.
$$

Example 5 $\quad\left\{\begin{array}{l}3 x+4 y=2 \\ 2 x-5 y=9\end{array}\right.$

Solving Systems of Two Equations Using Graphs

Recall that when an equation is graphed, each on the curve represents an
\qquad that \qquad the equation.

Suppose both equations of a system are graphed on the \qquad . Any points of
\qquad will represent ordered pairs which satisfy \qquad equations. This is exactly what we're looking for as a \qquad to the system.

Example 6

$$
\left\{\begin{align*}
y & =x-4 \tag{1}\\
x+y & =2
\end{align*}\right.
$$

Example 7

$$
\left\{\begin{align*}
x-2 y & =6 \tag{1}\\
y & =4 x+4
\end{align*}\right.
$$

Types of Solutions to Systems of Linear Equations

Each of the earlier example systems have \qquad This is not always the case.

Linear systems may instead have \qquad , or have \qquad .

Example 8 Algebraically find the nature of the solution to this system. Represent it with a graph.

$$
\left\{\begin{array}{l}
2 x-y=4 \tag{1}\\
6 x-3 y=12
\end{array}\right.
$$

These equations are \qquad because they \qquad at the same time.

The graphical representation has \qquad because the lines are

Example 9 Algebraically find the nature of the solution to this system. Represent it with a graph.

$$
\left\{\begin{align*}
x+2 y & =-2 \tag{1}\\
2 x+4 y & =8
\end{align*}\right.
$$

These equations are \qquad , because they \qquad at the same time.

The graphical representation has \qquad because the lines are \qquad .

Systems of Three Linear Equations

For a system of \qquad with \qquad , we can use the same techniques to find a solution.

1. Use \qquad or \qquad to remove one unknown from the system.
2. Solve for the remaining two unknowns.
3. Use the partial solution to solve for the removed unknown. State the complete solution.

Example 10 Using substitution:

$$
\left\{\begin{align*}
x+y+z & =6 \tag{1}\\
2 x-y+3 z & =11 \\
-x+3 y+4 z & =8
\end{align*}\right.
$$

Example 11 Using elimination:

$$
\left\{\begin{align*}
x+y+z & =6 \tag{1}\\
2 x-y+3 z & =11 \\
-x+3 y+4 z & =8
\end{align*}\right.
$$

2.4 Linear Regression

Functions are often used for \qquad real-world situations. Typically, the value of an is used as an input for the function, whose output is used to predict the value of a \qquad .

Scatter Plots

A \qquad is a plot used to visualize the relationship between two-variables, where each data point is treated as an \qquad and plotted as a \qquad on a plane.

Visually inspecting a scatter plot can help decide whether a \qquad is an appropriate model for a given set of data.

The independent variable is placed on the \qquad , and the dependent variable is placed on the \qquad .

Example 1 A voltage source is placed in an electronic circuit. For various voltages, the current in the circuit is measured. The following results are recorded:

$V(\mathrm{~V})$	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
$I(\mathrm{~mA})$	0.5	5.8	8.7	14.5	18.3	21.2	24.8	30.7

Note that voltage, V, is measured in volts, V, and current, I, is measured in milliampere, mA.

Regression

The process of \qquad a function to a set of \qquad in order to \qquad the association between variables is called \qquad . When the modeling function is linear, it is called \qquad -.

Since a linear function has the form \qquad , linear regression means choosing values for \qquad and \qquad in order to fit the data as well as possible. ${ }^{3}$ We will be using to find these values for us.

[^2]Example 2 For the electronic circuit example,

The Correlation Coefficient

The \qquad , denoted by \qquad is a quantity that measures the \qquad and \qquad of the linear association between two variables. r is in the interval \qquad .

Example 3 For the electronic circuit example,

The Coefficient of Determination

The \qquad , denoted by \qquad is a measure of how well a regression
line, or curve, fits the provided data. ${ }^{4}$ For \qquad (but not other types of regression) it is the \qquad of the correlation coefficient, so \qquad . Its value is in the interval \qquad .

Example 4 For the electronic circuit example,

[^3]
Making Predictions

There are two types of predictions that we can make using a regression model.
\qquad means predicting values \qquad the values in the data. If the model is a good fit for the data, then this can produce very reliable predictions.

Example 5 Estimate the current in the circuit when $V=2.6 \mathrm{~V}$.

Example 6 Estimate the voltage that corresponds to a current of $I=27.3 \mathrm{~mA}$.
\qquad means predicting values \qquad the values in the data. You need to be careful when \qquad , because it is very difficult to know how far the trend in the data continues outside of its range.

Example 7 Estimate the current in the circuit when $V=0.3 \mathrm{~V}$.

2.5 Piecewise Linear Functions

A \qquad is a function which is defined by \qquad , each applying to different parts of the \qquad -

Example 1 Evaluate each of the following using the function f.

$$
f(x)= \begin{cases}2 x & -2 \leq x \leq 3 \tag{1}\\ 4 & 3<x<6 \\ -x+9 & x \geq 6\end{cases}
$$

$f(5)$
$f(8)$
$f(6)$
$f(3)$
$f(-3)$

A piecewise function can be \qquad by considering each rule separately, and plotting each on its own \qquad .

The \qquad of the entire piecewise function is the \qquad of the domains of the separate rules. Similarly, the \qquad is the \qquad of the \qquad produced by each rule.

Example 2 For function f above, plot its graph and find its domain and range.

Domain:

Range:

Example 3 Define h as a piecewise function.

The Absolute Value Parent Function

An important piecewise function is the \qquad

parent function
domain
range
relation type
x-intercept
y-intercept
vertex
slopes

Absolute Value Functions

By applying \qquad to the parent function, we get the \qquad of the absolute value function:

- Graph is \qquad or opens \qquad if A is \qquad .

Graph is \qquad or opens \qquad if A is \qquad .

- Graph has two \qquad intervals, whose slopes are \qquad .
- Graph has a \qquad at \qquad -

A sketch of an absolute value function should include:

shape of curve	
vertex	
x-intercepts	
y-intercept	
endpoints	

Example 4 Sketch $g(x)=-2|x+3|+4$.
Orientation:
Slopes:
Vertex:
x-intercepts:
y-intercept:
endpoints:

Example 5 Find the function f represented by the following graph.

Orientation:
Slopes:

Vertex:

Example 6 Find the range of $f:[2,9) \rightarrow \mathbb{R}$, where $f(x)=\frac{1}{2}|x-4|+3$.

Example 7 Find the transformations required to transform $f(x)=2|x-2|+1$ to $g(x)=-3|x+1|+6$.

Example 8 Express $f(x)=5|x-4|+7$ as a piecewise function.

Chapter 3

Quadratic Functions and Equations

3.1 Quadratics in Vertex Form 42
3.2 Quadratics in Factored Form 46
3.3 Review of Distributing and Factoring 48
3.4 Special Quadratics 52
3.5 Factoring Quadratics in Standard Form 56
3.6 Completing the Square 60
3.7 The Quadratic Formula 63

3.1 Quadratics in Vertex Form

A \qquad is an expression which can be written in the form (with $a \neq 0$):

A \qquad is a function consisting of a quadratic expression. The three forms of these functions we usually consider are

The Quadratic Parent Function

parent function
domain
range
relation type
x-intercept
y-intercept
vertex

Solving Quadratic Equations Using Square Roots

A \qquad is any equation which can be written with a \qquad
\qquad on one side and \qquad on the other. Note that this might not be the original form of the equation.

If an equation is written in \qquad , it can be solved using \qquad :

1. Rearrange the equation to \qquad the quantity which is \qquad .
2. Eliminate the square with a \qquad . Consider both the \qquad and \qquad square roots.
3. Finish solving the equation by \qquad x.

Example 1 Solve $2(x-4)^{2}-5=13$
Example 2 Solve $-3(x+5)^{2}+7=7$

Example 3 Solve $(x+2)^{2}-7=0$
Example 4 Solve $2(x-6)^{2}+9=1$

Note that quadratic equations may have \qquad , \qquad , or \qquad real ${ }^{1}$ solutions.

[^4]
Graphing Quadratic Functions Using Vertex Form

By applying \qquad to the quadratic parent function, we get the \qquad of a quadratic function:

$$
f(x)=A(x-h)^{2}+k
$$

- Graph is \qquad or opens \qquad if A is \qquad .

Graph is \qquad or opens \qquad if A is \qquad .

- \qquad corresponds to a \qquad or \qquad from the x-axis.
- Graph has a \qquad at \qquad .

A sketch of a quadratic function should include:

shape of curve	
vertex	
x-intercepts	
y-intercept	
endpoints	

Example 5 Sketch $f(x)=(x-3)^{2}-4$.
Orientation:
Vertex:
x-intercepts:
y-intercept:
endpoints:

Example 6 Find the function g represented by the following graph.

Vertex:
y-intercept:

Domain:

Example 7 Find the range of $h:[-3,1] \rightarrow \mathbb{R}$, where $h(x)=-2(x+2)^{2}+7$.

Zeros, Roots, Solutions and x-Intercepts

These terms are related, but have subtly different meanings.
The \qquad of an expression are the values which cause the expression to equal \qquad .

The \qquad of an equation are the values which cause the equation to be \qquad .

The \qquad of a function are the input values which cause the output value to be \qquad .

The \qquad of a graph are the points where the curve \qquad .

Example 8

The \qquad of $(x-3)^{2}-4=0$ are

The \qquad of $f(x)=(x-3)^{2}-4$ are

The \qquad of $(x-3)^{2}-4$ are

The \qquad of the graph of $y=(x-3)^{2}-4$ are

3.2 Quadratics in Factored Form

The Zero Product Property

\qquad
If , then or or .

Equivalently, if the \qquad of a set of \qquad is \qquad then at least one of the
\qquad is \qquad .

Quadratic Equations in Factored Form

Example 1 Solve $3 x(x-5)=0$
Example 2 Solve $(x-4)(x+7)=0$

Example 3 Solve $(5 x-2)(7 x+4)=0$
Example 4 Solve $(3 x-8)^{2}=0$

Graphing Quadratic Functions in Factored Form

We can use the zero product property as above to find the \qquad of the graph.

To find the \qquad we can use the symmetry of the parabola. The \qquad passes
through the \qquad as well as exactly halfway between the \qquad .
h is the \qquad of the zeros of the function, and k is the value of the function evaluated at h.

Example 5 Sketch a graph of $f(x)=(x-2)(x-10)$. x-intercepts:
y-intercept:
vertex:

endpoints:

Example 6 Find the function g represented by the following graph.

Example 7 Write $f(x)=(1-x)(x+6)$ in vertex form.

3.3 Review of Distributing and Factoring

The \qquad is one of the most important rules in algebra. Many of our results going forward are derived from it.

The Distributive Property

Example 1 Verify $8(7+5)=8 \cdot 7+8 \cdot 5$
Example 2 Verify $3(20-6)=3 \cdot 20-3 \cdot 6$

The process of changing $a(b+c)$ to $a b+a c$ is called
\qquad _.

The reverse process is called \qquad .

The \qquad can be used to \qquad the distributive property.

Distributing

To \qquad algebraically, multiply each \qquad inside the parentheses by the \qquad outside the parentheses.

Example 3 Distribute $3 x(2 x-4)$
Example 4 Distribute $-4 y\left(7 y^{2}+5\right)$

Example 5 Distribute $3 x^{2}\left(x^{4}-2 x^{3}+5 x-1\right)$

If there are \qquad sets of parentheses, we need to \qquad over both. \qquad in the first set of parentheses is multiplied by \qquad in the second set of parentheses. After distributing, make sure you \qquad .

Example 6 Distribute $(x+4)(x-7) \quad$ Example 7 Distribute $(2 x+3)(x+6)$

Example 8 Distribute $(3 x-5)\left(x^{3}+2 x^{2}-7\right)$

Factoring Using the Greatest Common Factor

If all the \qquad in an expression have a \qquad which is the same, that \qquad is called a \qquad .

The \qquad , or \qquad , is the largest possible \qquad for the expression.

To factor, we can \qquad every term by the \qquad , and write the result in \qquad , with the \qquad written in front. As the expression has been both \qquad and \qquad by the \qquad the result is equivalent.

This method of \qquad is the simplest and should be attempted \qquad . If this is done correctly, there will be no \qquad remaining.

Example 9 Factor $9 m^{3}-12 m^{2}$

Example 10 Factor $12 a^{3} b+24 a^{2} b^{5}-42 a^{4} b^{4}$

Quadratics with Common Factors

We've already seen that \qquad can be convenient for finding the zeros of a function. In certain circumstances, \qquad can change a quadratic expression/function in \qquad into \qquad .

Example 13 Sketch a graph of $f(x)=-3 x^{2}-15 x$. factor:
x-intercepts:
y-intercept:
vertex:

endpoints:

3.4 Special Quadratics

In the previous section, we factored select quadratics in standard form using the greatest common factor. The following rules will allow us to factor other special cases.

Theorem: Perfect Squares

Proof

Theorem: Differences of Squares

Proof

These rules can be used for \qquad :

Example 1 Distribute $(x+10)^{2}$
Example 2 Distribute $(2 x+7)(2 x-7)$

The rules can also be used for \qquad :

Example 3 Factor $x^{2}-81$
Example 4 Factor $25 x^{2}-30 x+9$

It is always a good idea to attempt to \qquad before factoring with any other method, including special quadratics:

Example 5 Factor $5 x^{2}+20 x+20$
Example 6 Factor $63 x^{2}-175$

As with all quadratic equations, equations in these forms can be solved using the if they are \qquad $:$

Example 7 Solve $4 x^{2}+196=56 x$
Example 8 Solve $12 x^{2}-75=0$

Perfect Squares and Differences of Squares as Functions

Note that the \qquad and \qquad rules are useful for converting these types of quadratic functions between their three forms:

	perfect square	difference of squares
standard form		
vertex form		
factored form		

Example 9 Sketch a graph of $f(x)=-2 x^{2}+12 x-18$.
factor:
x-intercepts:
y-intercept:

vertex:
endpoints:

Example 10 Sketch a graph of $f(x)=3 x^{2}-12$.
factor:
x-intercepts:
y-intercept:
vertex:
endpoints:

Example 11 Write $g(x)=(x-5)^{2}-9$ in factored form.

Example 12 Write $h(x)=(x+7)^{2}-12$ in factored form.

Further Factoring Examples

While perfect squares and differences of squares are examples of \qquad expressions, they can also be used to factor certain other \qquad ${ }^{2}$.

Example 13 Factor $8 x^{4}-18 x^{2}$

Example 14 Solve $5 x^{3}+60 x^{2}+180 x=0$
Example 15 Factor $x^{4}-18 x^{2}+81$

[^5]
3.5 Factoring Quadratics in Standard Form

Recall that the \qquad of a quadratic expression is

Factoring Monic Quadratics

A quadratic expression is called \qquad if \qquad .

Theorem

If a monic quadratic expression $x^{2}+b x+c$ has values p and q such that and
then

Proof

Example 1 Factor $x^{2}+7 x+12$

Example 2 Factor $x^{2}-3 x-40$

Factoring Non-monic Quadratics

Often, a \qquad quadratic can be factored as if it were \qquad by first factoring using the \qquad .

Example 3 Factor $6 x^{2}-30 x+36 \quad$ Example 4 Solve $-4 x^{2}+36 x+88$

If this is not an option, then the following theorem can be used to help factor using the box method.

Theorem

In a 2×2 box using the box method, the \qquad of the values along each \qquad are the same.

Proof

Consider the general expression \qquad , which is distributed using the box method.

Along the first diagonal: \qquad
Along the second diagonal: \qquad

Example 5 Factor $5 x^{2}+28 x-12$
The first diagonal contains \qquad and \qquad .

The second diagonal has sum \qquad and product \qquad .
\Longrightarrow second diagonal is \qquad and \qquad .

Finding common factors for each row and column gives

Solving Equations by Factoring

Recall that a \qquad to an equation is a value which causes it to be \qquad . For quadratic equations, \qquad allows us to use the \qquad to find the solutions.

Example 8 Solve $x^{2}+15 x+36=0$
Example 9 Solve $x^{2}+5=8 x+14$

Example 10 Solve $4 x^{2}+25 x-21=0$
Example 11 Solve $20 x^{2}-56 x-12=0$

Graphing Using Factoring

We've already graphed quadratic functions in \qquad . Using the same methods, we can graph quadratic functions in \qquad if they can be \qquad .

Example 12 Sketch a graph of $f(x)=x^{2}+x-2$.
factor:
x-intercepts:
y-intercept:
vertex:

endpoints:

Example 13 Sketch a graph of $g(x)=-2 x^{2}+9 x-9$.
factor:
x-intercepts:

y-intercept:
vertex:
endpoints:

3.6 Completing the Square

While many quadratic expressions can be \qquad directly using the methods in the previous sections, most cannot. Instead, we use can a technique called \qquad .

The goal is to rewrite the expression so that it contains a \qquad which is then factored. The result is an expression in \qquad . This makes it possible to \qquad the related \qquad , or \qquad the related \qquad .

The diagram to the right shows that $x^{2}+6 x+4$ is not a perfect square, but its square can be \qquad by adding and subtracting \qquad .

Example 1 Solve $x^{2}+6 x+4=0$ by completing the square.

Step 1: Identify the constant which completes the square. Step 2: Add and subtract to complete the perfect square.
Step 3: Factor the perfect square to get vertex form.
Step 4: Solve using the square root method.
60

Example 2 Solve $x^{2}-10 x+7=0$

Example 4 Solve $x^{2}+3 x+1=0$

Example 6 Write $f(x)=x^{2}-8 x+13$ in vertex form.

Example 3 Solve $x^{2}+2 x-5=0$

Example 5 Solve $4 x^{2}+20 x+18=0$

Example 7 Write $g(x)=-2 x^{2}-20 x-59$ in vertex form.

Example 8 Sketch a graph of $f(x)=x^{2}-6 x+1$.
x-intercepts:
y-intercept:
vertex:
endpoints:

3.7 The Quadratic Formula

An alternative method to \qquad is using a \qquad to directly find the \qquad to a quadratic equation.

Theorem: The Quadratic Formula

A quadratic equation in standard form, \qquad , can be solved directly using the formula

Proof

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x^{2}+x+=0 \\
& \text { divide both sides by } a \text { (1) } \\
& x^{2}+x+\quad-\quad+\quad=0 \\
& (x+\quad)^{2}-\quad=0 \\
& =0 \\
& (x+\quad)^{2}= \\
& x+\quad= \pm \\
& \text { take the square root (5) } \\
& x= \\
& \text { isolate squared expression (4) } \\
& \text { take the square root (5) } \\
& \text { finish solving for } x \text { (6) }
\end{aligned}
$$

The quantity \qquad is known as the \qquad , denoted by \qquad , the upper case
Greek letter \qquad . We can use it to state a simplified version of the quadratic formula.

Counting Real Solutions

The \qquad of the \qquad is particularly useful for finding the number of
\qquad to a quadratic equation. This also corresponds to the number of
\qquad in the \qquad of a quadratic function.

	$\Delta>0$	$\Delta=0$	$\Delta<0$
solutions			
number of real solutions			
	$\xrightarrow[x]{x}$	\xrightarrow{x}	
		\xrightarrow{x}	

Graphing Quadratic Functions in Standard Form

Recall that the x-coordinate of the \qquad h, is the \qquad of the \qquad of the function.

Since the \qquad of the function are given by the
\qquad , we get that their average is given by

This formula holds even if there are not two real zeros.
This gives us the final tools we need for graphing quadratic functions in standard form.

shape of curve	
vertex	
x-intercepts	
y-intercept	
endpoints	

Example 3 Sketch a graph of $f(x)=-0.5 x^{2}-3.2 x+5.8$, with x-intercepts to 2 decimal places.
x-intercepts:
y-intercept:
vertex:

endpoints:

Example 4 Sketch a graph of $g:[0,6) \rightarrow \mathbb{R}$, where $g(x)=2 x^{2}-8 x+11$
x-intercepts:
y-intercept:
vertex:

endpoints:

Converting Quadratics Between Forms

Throughout this chapter we've seen examples of converting between the three forms of quadratic functions. This diagram summarizes those methods.

In practice, if converting between vertex and factored forms, it's often easier to convert to standard form first.

Chapter 4

Further Quadratics

4.1 Complex Numbers 68
4.2 Quadratic Equations with Complex Solutions 72
4.3 Systems Involving Quadratic Equations 74
4.4 Quadratic Regression 77

4.1 Complex Numbers

Recall that some \qquad have \qquad , even if they are something simple, such as

We can solve equations like this by introducing numbers outside the set of real numbers, known as \qquad .${ }^{1}$

The \qquad denoted by \qquad is a number defined as having the property
and is a solution to the equation above.
The \qquad of i follow a very particular pattern:

i^{0}		
i^{1}		
i^{2}		
i^{3}		
i^{4}		
i^{5}		
i^{6}		
i^{7}		
i^{8}		

Example 1 Evaluate each of the following.
i^{394}

$$
i^{-23}
$$

[^6]An \qquad is any \qquad multiplied by \qquad .

A \qquad is any number of the form \qquad where a and b are real numbers.

Note that if \qquad , the resulting complex number is real. Therefore, the real numbers are a
\qquad of the complex numbers.

Typed	Written	Name	Description
\mathbb{C}			The set containing all numbers, and their linear combinations.

For a given complex number, z, the \qquad is denoted by \qquad , and the
\qquad is denoted by \qquad .

Example 2 Find the real and imaginary parts of each of the following.
$z_{1}=3+7 i$
$z_{2}=-5+11 i$
$z_{3}=9-13 i$

Adding and Subtracting Complex Numbers

To add and subtract complex numbers, add and subtract the \qquad and \qquad parts of the numbers independently. That is,

Example 3 Evaluate the following using z_{1}, z_{2} and z_{3} above.

Multiplying Complex Numbers

Complex numbers can be multiplied using the \qquad as usual, which we can represent using the \qquad . Don't forget to replace \qquad with \qquad .

Example 4 Evaluate $(2+5 i)(3-7 i)$
Example 5 Evaluate $(-1-8 i)(5-4 i)$

Complex Conjugates

The \qquad of a complex number is the result of \qquad the \qquad of the imaginary part of the number. The real part is \qquad . \qquad is denoted by a \qquad over the number or variable.

Example 6 Find the conjugate of each of the following.
$z_{1}=3+7 i$
$z_{2}=-5+11 i$
$z_{3}=9-13 i$

Example 7 Multiply $z=3-4 i$ by its conjugate.

Dividing Complex Numbers

When we divide, the aim is to write the final result in the form \qquad , which takes a little more algebraic manipulation than the other operations.

This method relies on the property that the \qquad of a complex number and its \qquad is a \qquad _.

1. Write the division as a \qquad .
2. \qquad both the \qquad and \qquad by the \qquad of the
\qquad -
3. Evaluate each \qquad .
4. Simplify to the form \qquad .

Example 8 Simplify $\frac{2}{3+5 i}$

Example 9 Simplify $\frac{3+4 i}{5-2 i}$

4.2 Quadratic Equations with Complex Solutions

Recall that when the \qquad of a quadratic equation, $\Delta=b^{2}-4 a c$, is \qquad ,
the equation has no \qquad solutions. It turns out that these equations do indeed have solutions.

Theorem

Every quadratic equation $a x^{2}+b x+c=0$ has \qquad (when multiplicity ${ }^{2}$ is considered), whose nature is determined by the \qquad $\Delta=b^{2}-4 a c:$

1. If $\Delta>0$, then there are \qquad .

2 . If $\Delta=0$, then there is \qquad with a multiplicity ${ }^{2}$ of two.

3 . If $\Delta<0$, then there are \qquad .

Example 1 Solve each of the following equations with complex solutions.
$x^{2}+9=0$
$x^{2}+75=0$
$(x+4)^{2}+36=0$

Generally, quadratic equations with complex solutions can be solved in the usual way using
\qquad or \qquad .

Example 2 Determine the nature of the solutions of $x^{2}=2 x-5$, then solve it.

[^7]Example 3 For each equation, determine the nature of the solutions. Verify by solving. $-3 x^{2}+4 x-2=0$
$4 x^{2}+25=20 x$
$3 x^{2}+6 x=1$

4.3 Systems Involving Quadratic Equations

Quadratic-Linear Systems

Previously, we've worked with systems consisting of only \qquad . We now have the tools necessary to solve systems when \qquad are included as well.

The meaning of a \qquad to a quadratic-linear system is unchanged. A solution consists of values for \qquad which satisfy \qquad simultaneously (at the same time.) Because quadratics are involved, there may be \qquad , \qquad or \qquad real solutions.

As with \qquad , the goal is to algebraically manipulate the system so that all variables except one are \qquad resulting in a \qquad , which can be solved by the usual means.

Don't forget to \qquad $!$

Example 1 Solve the system.

$$
\left\{\begin{array}{l}
y=x^{2}+6 x-33 \tag{1}\\
y=3 x-5
\end{array}\right.
$$

Example 2 Solve the system to 2 decimal places.

$$
\left\{\begin{align*}
x+3 y & =6 \tag{1}\\
y & =x^{2}-5
\end{align*}\right.
$$

Example 3 Graphically find the solutions to the system

$$
\left\{\begin{aligned}
y & =-x^{2}+6 x-2 \\
x+y & =4
\end{aligned}\right.
$$

The curve for $y=-x^{2}+6 x-2$ is already plotted.

Example 4 Determine the number of real solutions of the system

$$
\left\{\begin{array}{l}
y=5 x+11 \\
y=-x^{2}+2 x+8
\end{array}\right.
$$

Example 5 Find k such that the system has exactly one solution.

$$
\left\{\begin{array}{l}
y=-x^{2}+4 x-4 \\
y=k x-3
\end{array}\right.
$$

Identifying Quadratics using Linear Systems

Suppose we know that a function f is quadratic, and that $f(3)=5$. The function can be written in standard form as
which, by substituting $x=3$ and $f(x)=5$, becomes the equation

Is it possible to identify $f(x)$ from this equation?

Recall that a system in \qquad requires \qquad to be solvable.

Theorem

A \qquad function can be \qquad if it has at ___ points on the domain.

Example 6 Find the quadratic function f which satisfies $f(3)=5, f(0)=-1$ and $f(4)=15$.

4.4 Quadratic Regression

Recall that \qquad is the process of fitting a modeling function to a set of data in order to approximate the relationship between variables.
\qquad uses a \qquad function for the model. It is typical to use the \qquad form of the function. In practice, this means choosing values for \qquad , \qquad and
\qquad so that \qquad fits the data as well as possible.

The \qquad has the same meaning as for linear regression: it is a measure of how well the regression curve fits the data. For non-linear regression, \qquad has no relation to \qquad .

Example 1 A camera captures the flight of a ball after it is thrown. The frames are analyzed, and the following data is recorded showing the horizontal distance, x, of the ball from where it was thrown versus its vertical height above the ground, y.

$x(\mathrm{ft})$	1.0	3.0	5.0	7.0	9.0	11.0
$y(\mathrm{ft})$	7.3	9.6	11.6	13.4	15.1	16.3

Use quadratic regression to model the flight of the ball.

Once technology is used to perform a \ldots, it is usually simple to use the same technology to \qquad the modeling function with the data, and perform further calculations related to the function.

Example 2 Comment on how well the model fits the data.

Example 3 Estimate the height of the ball after it has traveled 6.4 ft .

Example 4 Predict the maximum height of the ball, and the distance it will travel before hitting the ground.

Note that to answer the previous example, we had to use \qquad , which may make the prediction unreliable. In this case, physics predicts that a "projectile" (such as the ball in the examples) has a parabolic path, which increases our confidence in our quadratic model, so the predictions seem sensible.

But suppose that someone catches the ball before it hits the ground. Then our prediction of the distance the ball will travel is incorrect. Always be careful using \qquad , as additional information may be needed to accept or reject our predictions.

Chapter 5

Polynomials

5.1 Polynomial Concepts 80
5.2 Cubic Functions 82
5.3 Special Cubics 84
5.4 Polynomial Division 86
5.5 Factoring Polynomials 90
5.6 Graphs of Polynomial Functions 92

5.1 Polynomial Concepts

A \qquad is an expression which, in standard form, can be written as

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where

- n, and the following decreasing exponents, are \qquad greater than or equal to \qquad .
- $a_{n}, a_{n-1}, \ldots, a_{0}$ are \qquad (real numbers ${ }^{1}$).
- $a_{n} \neq 0$.

The largest \qquad , n, is called the \qquad of the polynomial.

The \qquad of a polynomial are the separate expressions of the form $a_{i} x^{i}$. The \qquad is the \qquad of its \qquad .

Example 1 Write $P(x)=9 x^{2}-3 x^{3}-11+12 x^{5}-2 x+7 x^{2}+5$ in standard form.

Naming Polynomials by Degree

degree	name	example
0		
1		
2		
3		
4		
5		

If the polynomial has a higher degree, it can be referred to as a \qquad .

For example, $5 x^{9}-x^{8}+6 x^{7}$ is a \qquad .

[^8]
Naming Polynomials by Number of Terms

terms	name	example
1		
2		
3		

The name \qquad is a generalization of these names, with the prefix \qquad meaning any number of terms fits the definition.

Example $2 x^{4}-7 x^{2}$ is a \qquad .

Adding and Subtracting Polynomials

To add or subtract polynomials, add or subtract the \qquad of \qquad with matching exponents.

Example 3 Add $3 x^{4}+7 x^{3}-9 x^{2}+5$ and $-8 x^{4}+5 x^{3}+2 x-3$.

Example 4 Subtract $5 x^{4}-3 x^{2}+4 x-11$
and $x^{4}-7 x^{3}+9 x^{2}-6$.

Multiplying Polynomials

Polynomials are multiplied using the \qquad which was covered in Sec. 3.3.

Example 5 Distribute $\left(2 x^{2}-7 x\right)\left(x^{5}+3 x^{3}-9 x^{2}\right)$

5.2 Cubic Functions

Graphing polynomials becomes more difficult as their degree increases past two. An exception is functions resulting from \qquad applied to the \qquad .

parent function
domain
range
relation type
x-intercept
y-intercept
point of inflection

The graphs of cubic functions have a point of
\qquad , which is a point where the \qquad
changes direction.
In the case of the parent function $f(x)=x^{3}$, the curve changes from \qquad to \qquad at $(0,0)$.

Note that while the parent cubic function is
\qquad , this is not true of all cubic functions, including the one shown in the diagram here.

Graphing Cubic Functions Using Transformations

By applying \qquad to the cubic parent function, we get the form . Only a tiny subset of cubic functions can be written in this form. A sketch of this type of cubic function should include:

shape of curve	
point of inflection	
x-intercept	
y-intercept	
endpoints	

Example 1 Sketch $f(x)=\frac{1}{2}(x-3)^{3}+4$.
Orientation:
Point of Inflection:
x-intercept:
y-intercept:
endpoints:
\square

Example 2 Find the function g represented by the following graph.

Point of inflection:

Other point:

5.3 Special Cubics

Theorem: Perfect Cubes

Proof

Theorem: Sums and Differences of Cubes

Proof

As with the special quadratics in section 3.4, we can use these rules to quickly \qquad and
\qquad certain expressions.

Example 1 Distribute $(x-5)^{3}$
Example 2 Distribute $(x+4)\left(x^{2}-4 x+16\right)$

Example 3 Distribute $(3 x+7)^{3}$

Example 4 Factor $x^{3}-1331$
Example 5 Factor $x^{3}+12 x^{2}+48 x+64$

Example 6 Factor $729 x^{3}-512$

Some expressions can be factored by combining these rules with others we've already learned.
Example 7 Factor $2 x^{8}-1458 x^{2}$

5.4 Polynomial Division

Recall from elementary school, before you learned decimals and fractions, that \qquad of
\qquad results in a \qquad when the \qquad isn't exact.

Example 1

$$
\begin{array}{ll}
19 \div 7= & \text { because } \\
35 \div 8= & \text { because } \\
63 \div 11= & \text { because }
\end{array}
$$

Note that the \qquad will always be smaller than the \qquad . The part of the result which is not the remainder is called the \qquad .
\qquad , as it turns out, are \qquad in a manner very similar to \qquad .2

Example 2 Verify that when $P(x)=x^{4}-x^{3}-13 x^{2}+28 x-9$ is divided by $x-3$, the quotient is $Q(x)=x^{3}+2 x^{2}-7 x+7$ and the remainder is 12 .

The goal of \qquad is to find the \qquad and the \qquad . There are several methods that can be used, but we will use a variation of the \qquad as we are already familiar with it.

[^9]In the final result, the \qquad is placed along the left-hand side of the box grid, and the
\qquad is placed along the top. The original \qquad is mostly contained within the grid, but won't fit perfectly if there is a \qquad .

Example 3 Divide $P(x)=x^{3}-2 x^{2}-21 x+7$ by $x+4$.

Example 4 Divide $P(x)=4 x^{3}-6 x^{2}+8$ by $x-2$.

Example 5 Divide $x^{4}+x^{3}-17 x^{2}-42 x-66$ by $x^{2}+3 x+4$.

The Remainder Theorem

Recall that in integer division, the \qquad is always less than the \qquad .

A related idea for polynomials is described by the following theorem.

Theorem

In \qquad , if there is a \qquad , its \qquad is always
less than the \qquad of the \qquad .

If the \qquad is \qquad , then the \qquad must be a \qquad -.

We can easily confirm that this is true for the examples above. In the particular case of a linear divisor, the following theorem is very important:

The Remainder Theorem

Suppose a \qquad , $P(x)$, is \qquad
by a \qquad , $x-a$.

Then the \qquad is equal to $P(a)$.

Proof
Let $Q(x)$ be the quotient, and let R be the remainder.

Example 6 Confirm the remainder from example 3, dividing $P(x)=x^{3}-2 x^{2}-21 x+7$ by $x+4$.

Example 7 Confirm the remainder from example 4, dividing $P(x)=4 x^{3}-6 x^{2}+8$ by $x-2$.

If the linear divisor is not \qquad , then we can use this updated version of the theorem.

Generalized Remainder Theorem

Suppose a \qquad , $P(x)$, is \qquad by a \qquad which equals \qquad when $x=a$.

Then the \qquad is equal to $P(a)$.

Example 8 Suppose $P(x)=2 x^{3}-x^{2}+k x+27$ is divided by $2 x-3$, and the remainder is 9 . Find the value of k.

5.5 Factoring Polynomials

Suppose that a \qquad $P(x)$ is divided by a particular \qquad $x-a$, and that the result is a \qquad $Q(x)$ with \qquad . This means we can write the statement
which means that $x-a$ is a \qquad of $P(x)$.

The following is a special case of the \qquad , when there is

The Factor Theorem

$x-a$ is a \qquad of the \qquad $P(x)$

$$
\text { iff (if and only if) } P(a)=0
$$

This suggests a method we can use to \qquad the polynomial $P(x)$:

Step 1: Find a value a for which $P(a)=0$, which means $x-a$ is a \qquad -

Step 2: \qquad $P(x)$ by $x-a$.

Step 3: Continue by \qquad the resulting \qquad -

Example 1 Factor $P(x)=x^{3}-21 x+20$.

Example 2 Solve $2 x^{3}-7 x^{2}-8 x+28=0$

Example 3 Factor $P(x)=x^{5}-5 x^{4}-25 x^{3}+65 x^{2}+84 x$

5.6 Graphs of Polynomial Functions

Recall that a polynomial is a type of \qquad . If it is treated as a function, then it is called a \qquad .

When \qquad the graphs of polynomial functions, we'll need to think about how the function \qquad in two different ways:

- \qquad , which means we only consider the immediate vicinity (close to) the \qquad we're interested in; and
- \qquad , which means we consider the function over its entire \qquad .

Zeros, x-Intercepts and Multiplicity

For a polynomial function, as with all functions, the \qquad of its graph correspond to the \qquad of the function, which are the \qquad values which cause the \qquad values to equal zero.

Example 1 Find the zeros of $f(x)=(x+1)^{2}(x-1)^{3}(x-2)$, and find the x-intercepts of its graph.

How many zeros are there in this example? If we count them, the simple answer is \qquad . If we're being more precise, we would say this is the number of \qquad zeros.

But that's not the only way to count. Note that 1 is a \qquad because $(x-1)$ is a \qquad of the polynomial. But it's not a \qquad just once, but \qquad times. So we can say that 1 is a \qquad . When we count the \qquad with \qquad , there are \qquad .

If a zero has	1	2	3
the function behaves _ like it is			
and the x-intercept is a			

The \qquad is found as in any function, at the point \qquad .

Example 2 Identify the zeros and their multiplicity of the polynomial function f shown in the graph.

Positive and Negative Intervals

A \qquad is an interval of the domain on which the value of the function is
\qquad and its graph is \qquad the x-axis.

A \qquad is an interval of the domain on which the value of the function is
\qquad , and its graph is \qquad the x-axis.

Keep in mind that a function's value is \qquad at its zeros (by definition), and so is neither
\qquad or \qquad .

If a polynomial function changes \qquad , it will be at a \qquad , but not every \qquad causes a change in \qquad .

Example 3 Identify the positive and negative intervals for the polynomial function f shown in the graph. f is positive on the interval
f is negative on the interval

Minima and Maxima

A \qquad of a function is a point at which the function has a greater value than any points nearby. A \qquad of a function is a point at which the function has a lesser value than any nearby points nearby. For polynomial functions, these points occur at \qquad .

The \qquad of a function is the point at which the function has a greater value than at \qquad other point in th domain. If it exists, it corresponds with either a
\qquad or an \qquad . Similarly, the \qquad has a value less than every other point and, if it exists, corresponds with a \qquad or an \qquad -

Example 4 Identify the (approximate) local and global maxima and minima for the polynomial function f shown in the graph.
f has a local maximum at
and has
f has local minima at and has

Domain and Range

Polynomials can be evaluated for every real number, so the \qquad domain of a polynomial function is \qquad . If a graph shows \qquad however, the domain has been \qquad .

Knowing the global \qquad and/or \qquad , if they exist, will typically allow us to find the \qquad .

Example 5 State the range of the function above.

Increasing and Decreasing

f is said to be \qquad if $f(x)$ increases as x increases, which implies \qquad slope.
f is said to be \qquad if $f(x)$ decreases as x increases, which implies \qquad slope.

Example 6 Identify the increasing and decreasing intervals for the polynomial function f shown in the graph. f is increasing on the interval
f is decreasing on the interval

Example 7 Find a polynomial function g to fit the following graph.

Chapter 6

Rational Expressions and Functions

6.1 Simplifying Rational Expressions 98
6.2 Adding and Subtracting Rational Expressions 101
6.3 Complex Fractions 104
6.4 Rational Equations 106
6.5 Simple Rational Functions 108
6.6 Functions with Quadratic Denominators 112

6.1 Simplifying Rational Expressions

Recall that a \qquad is a number which can be written in the form of a fraction, where the \qquad and \qquad are both \qquad .

Examples	Non-examples

Similarly, a \qquad is an expression which can be written in the form of a fraction, where the \qquad and \qquad are both \qquad .

Examples	Non-examples

Also recall that any \qquad (with a key exception) divided by \qquad is equal to \qquad You should be familiar with using this property to \qquad .

Examples	$\frac{9}{6}$	$\frac{50}{60}$

We can use the same property to \qquad .

Example 1 Simplify $\frac{(x+2)(x-5)}{x-5}$

However, if the value being divided by itself is \qquad , then the expression cannot be \qquad like this. Our example has this issue when \qquad . If this is the case, the original expression and the simplified version are not \qquad .

The solution to this problem is to \qquad from our simplification. We call this an
\qquad , and we write the result as

Example 2 Simplify:

$\frac{12 x^{3}}{3 x}$

Example 4 Simplify:
$\frac{4-x^{2}}{x^{2}+x-6}$

Example 3 Simplify:
$\frac{(x-5)(x+3)(x-6)}{(x-6)(x+3)(x+5)}$

Example 5 Simplify:
$\frac{x^{3}+125}{x^{3}+15 x^{2}+75 x+125}$

An Error to Avoid

Remember that only \qquad can be eliminated by dividing, not \qquad . With an expression like the one in example 4 , a common error is to do the following.

Don't do this: $\frac{x^{22}+5 x+6}{\not x^{2}+x-6}=\frac{5 x+6}{x-6}$
This is because the \qquad operation of division is \qquad , not \qquad or

Multiplying and Dividing Rational Expressions

Recall that fractions can be \qquad by multiplying the \qquad and multiplying the \qquad .
Example $\frac{3}{5} \cdot \frac{11}{6}$
Also, recall that \qquad by a fraction is the same as multiplying by its \qquad .

Example $\quad \frac{4}{7} \div \frac{8}{9}$
Note that in these examples, some simplifying could have been done at the start.

The same methods can be used to \qquad and \qquad rational expressions. It is always a good idea to \qquad and \qquad whenever possible.

Example 6 Simplify:
$\frac{x^{2}-2 x-8}{x+3} \cdot \frac{x+3}{x^{2}+4 x-32}$

Example 7 Simplify:
$\frac{x^{2}+12 x+35}{3 x^{2}+x-10} \cdot \frac{x^{2}+9 x+14}{x+5}$

Example 8 Simplify:
$\frac{x^{2}+7 x-30}{x-4} \div\left(x^{2}+6 x-40\right)$

Example 9 Simplify:

$$
\frac{x^{2}+7 x+10}{x^{2}-x-6} \div \frac{x^{2}+6 x+5}{x^{2}+x-12}
$$

In the last example, there's an extra \qquad at -4 . The factor \qquad is not eliminated, but it is originally in a \qquad . If $x=-4$, the original expression is
\qquad .

6.2 Adding and Subtracting Rational Expressions

Recall that \qquad can be \qquad or \qquad if they have the same \qquad .

Examples

$\frac{2}{5}+\frac{7}{10}$

$$
\frac{3}{4}-\frac{1}{6}
$$

Similarly, \qquad expressions can be \qquad or \qquad if they have the same
\qquad .

Example 1 Simplify:
$\frac{x^{2}+8 x}{x^{2}+7 x+12}-\frac{10 x+24}{x^{2}+7 x+12}$

Example 2 Simplify:
$\frac{x-12}{x-3}+\frac{4 x+15}{x^{2}-3 x}$

Finding the Lowest Common Multiple

The \qquad of two (or more) expressions is the \qquad expression which is a \qquad of each given expression.

To find the \qquad , find the simpliest \qquad for each expression so that each has the same \qquad , which is the \qquad .

Example 3 Find the lowest common multiple of $5 x, 10 x^{2} y$ and $15 y^{3}$.

Example 4 Find the lowest common multiple of $(x-6)^{2}$ and $(x-6)(x+8)$.

Example 5 Find the lowest common multiple of $x(x-2)$ and $(x-2)(x+5)$.

Example 6 Find the lowest common multiple of $x^{2}+9 x+20$ and $x^{2}-2 x-35$.

Adding or Subtracting with Different Denominators

If the \qquad are different, we look to find the \qquad of the \qquad and make that the \qquad -.

It is best practice to \qquad and \qquad the resulting \qquad , in case the expression can simplify further.

Example 7 Simplify:
$\frac{x}{x+1}-\frac{4}{x+4}$

Example 8 Simplify:
$\frac{5}{x^{2}+9 x+14}+\frac{x}{x^{2}+6 x+8}$

Example 9 Simplify:
$\frac{x}{x^{2}-x-6}-\frac{9}{x^{2}+9 x-36}$

6.3 Complex Fractions

We've already learned that a rational expression is a fraction with polynomials for the numerator and denominator.

If the numerator and denominator of a fraction are \qquad themselves, the fraction is a \qquad . These expressions are complicated, as their name suggests ${ }^{1}$, so it is desirable to \qquad them as much as possible.

If the numerator and denominator each contain only a \qquad , then the complex fraction is simply just \qquad of two rational expressions, written in a different form. This means they can be treated in the exact same way, by \qquad by the \qquad of the \qquad .

Example 1 Simplify:

$\frac{\frac{x+3}{x}}{\frac{x}{x+1}}$

If a complex fraction contains a \qquad or \qquad of rational expressions, then there are a couple of options to \qquad them.

Method 1: Multiply by Denominators

In this method, we eliminate the \qquad of the smaller fractions by \qquad everything by their \qquad .

Example 2 Simplify:
$\frac{\frac{1}{x}+\frac{2}{x+5}}{\frac{x}{x+5}}$

[^10]
Method 2: Adding and Subtracting First

In this method, we simplify the \qquad and/or the \qquad as we would for any expression with addition or subtraction. Then treat the result as \qquad .

Example 3 Simplify:
$\frac{\frac{1}{x}+\frac{2}{x+5}}{\frac{x}{x+5}}$

Example 4 Simplify:
Using Method 1 :
$\frac{\frac{x-7}{x^{2}-9}+\frac{2}{x+3}}{\frac{5}{x-3}-\frac{x+6}{x^{2}-9}}$

Using Method 2 :
$\frac{\frac{x-7}{x^{2}-9}+\frac{2}{x+3}}{\frac{5}{x-3}-\frac{x+6}{x^{2}-9}}$

6.4 Rational Equations

An equation which consists of \qquad is called a \qquad .

As with any equation, \qquad means finding the values for the \qquad which make the equation \qquad .

To simplify the equation, we can eliminate the \qquad by multiplying the entire equation by their \qquad . This reduces the equation to a \qquad equation, which is frequently a \qquad equation. We can then use our typical methods to finish solving.

Example 1 Solve $\frac{x+2}{x-2}-\frac{x+9}{x}=1$

We can check that both solutions are \qquad by \qquad them into the original equation.

In this case, both of the solutions \qquad the equation. This is not always true, which is why we need to check the solutions.

For rational equations, it is possible to obtain \qquad solutions. solutions, which are not actually solutions, appear when the equation is solved, but are
\qquad with the original equation.
Example 2 Solve $\frac{x-3}{x+3}+\frac{2}{x-2}=\frac{5 x}{x^{2}+x-6}$

Checking the solutions:

Because extraneous solutions can arise from rational equations, you must \qquad your solutions with the original equation.

6.5 Simple Rational Functions

The simplest non-trivial rational function is the \qquad .

parent function
domain
range
relation type
horizontal asymptote
vertical asymptote
shape

An \qquad is a line which a function's curve continues to get \qquad to, without ever
\qquad it.

This function has a \qquad at \qquad , because as x \qquad
towards $+\infty$ or \qquad towards $-\infty, f(x)$ continues to get \qquad to zero.

As $x \rightarrow \pm \infty, f(x) \rightarrow 0$
The function also has a \qquad at \qquad because as x gets \qquad to zero, $f(x)$ continues to \qquad $+\infty$ or \qquad to $-\infty$.

As $x \rightarrow 0, f(x) \rightarrow \pm \infty$

Transformations of the Reciprocal Function

By applying \qquad to $y=\frac{1}{x}$, we arrive at the \qquad

A sketch of this type of function should include:

shape of curve	
x-intercept	
y-intercept	
vertical asymptote	
horizontal asymptote	
endpoints	

The points one unit left and right of the vertical asymptote are useful for guiding the overall shape of the graph.
Example 1 Sketch a graph of $f(x)=\frac{-1}{x-3}-5$, and state its domain and range in three forms.
Orientation:
Asymptotes:

y-intercept:
Other points:

Example 2 Find the function g represented by the following graph.

Inverses of Simple Rational Functions

Functions of the form $y=\frac{A}{x-h}+k$ are \qquad , which means they each have an
\qquad . It turns out that the \qquad have the
\qquad . Finding \qquad follows the same process we used in section 2.2.
Example 3 Find the inverse of $f(x)=\frac{1}{x-2}+7$. State the domain and range of f, and the domain and range of f^{-1}.

Linear Rational Functions

A rational function whose numerator and denominator are both \qquad has a \qquad for its graph, just like $y=\frac{A}{x-h}+k$, though determining its characteristics is more difficult. To handle these functions, we can use \qquad (section 5.4) to convert their form.

Example 4 Write $f(x)=\frac{3 x+8}{x+2}$ in the form $y=\frac{A}{x-h}+k$, and sketch its graph.
You can use the known values $f(0)=4$ and $f\left(-\frac{8}{3}\right)=0$.

Example 5 Write $g(x)=\frac{-2}{x-6}+7$ in the form $y=\frac{a x+b}{c x+d}$.

6.6 Functions with Quadratic Denominators

Transformations of x^{-2}

parent function
domain
range
relation type
horizontal asymptote
vertical asymptote
shape

This parent function is similar to the \qquad function. It has the same \qquad and its graph has the same \qquad However, because x is \qquad the output values are all \qquad , which changes the \qquad .

Note that the shape of a curve is not a \qquad but is a slightly different shape called a
\qquad -.

By applying \qquad , we arrive at the \qquad

A sketch of this type of function should include:

shape of curve	
x-intercepts	
y-intercept	
vertical asymptote	
horizontal asymptote	
endpoints	

Example 1 Sketch a graph of $f(x)=\frac{9}{(x-7)^{2}}-4$.
Asymptotes:
x-intercept:

Other points:

Example 2 Find the rule for a rational function f with an implied domain of $(-\infty,-2) \cup(-2, \infty)$ and a range of $(-\infty, 8)$. The function does not represent a stretch or compression applied to the parent function.

Reciprocals of Quadratic Functions

Functions of the form $f(x)=\frac{1}{q(x)}$, where $q(x)$ is a \qquad function, can be graphed by examining the behavior of $q(x)$.

If \quad function $q(x) \ldots$	\ldots.... then its $\quad f(x)=\frac{1}{q(x)} \ldots$
has a zero at x	
has a local minimum (h, k)	
has a local maximum (h, k)	
approaches $\pm \infty$	
is positive	
is negative	
equals ± 1	

Example 3 Draw the graph of $f(x)=\frac{1}{x^{2}-8 x+12}$. The graph of $q(x)=x^{2}-8 x+12$ is already shown.

Asymptotes:
y-intercept:
Vertex:

Note that you won't typically be given the parabola for the quadratic in practice questions. It's still a good idea to draw it first before attempting to draw its reciprocal.

Example 4 Sketch a graph of $f(x)=\frac{2}{x^{2}-4 x+5}$.
Rewrite $f(x)$ in the form $\frac{1}{q(x)}$:

Properties of $q(x)$:

Zeros:
y-intercept:

Vertex:

Equals ± 1 :

Chapter 7
 Radicals and Rational Exponents

7.1 Radical Expression Concepts 118
7.2 Rational Exponents 121
7.3 Square Root Equations 124
7.4 Square Root Functions 126
7.5 Cube Root Functions 130
7.6 Quadratics, Cubics and Roots as Inverses 132

7.1 Radical Expression Concepts

Recall that the \qquad of x is the value y such that $y^{n}=x$, which we write as

- The symbol \qquad is the \qquad symbol.
- The small number written over the radical \qquad is called the \qquad . (Don't mix this up with a coefficient written in front of the radical.)
- The value \qquad under the \qquad is called the \qquad .

The 2nd root is called the \qquad , and is usually written without the \qquad .

The 3rd root is called the \qquad .

Example 1

$$
\begin{array}{ll}
\sqrt{81}= & \text { because } \\
\sqrt[3]{125}= & \text { because } \\
\sqrt[5]{32}= & \text { because }
\end{array}
$$

Simplifying Radicals

It is conventional to write radical expressions with the smallest possible value in the \qquad .
This is done by identifying a \qquad which has a \qquad nth root.

Example 2 Simplify the following.
$\sqrt{72}$
$\sqrt[3]{108}$
$\sqrt[6]{128}$

The same principle can be used when there are \qquad in the \qquad .

Example 3 Simplify the following.
$\sqrt{75 x^{7}}$
$\sqrt[3]{48 x^{5}}$
$\sqrt[4]{81 x y^{5}}$

Adding and Subtracting Radicals

Radical terms with the same \qquad and \qquad can be added or subtracted by adding or subtracting their \qquad just as \qquad are simplified.

Some radicals may need to be \qquad first.

Example 4 Simplify the following.
$9 \sqrt{6}-7 \sqrt{3}+\sqrt{6}+4 \sqrt{3}$
Example 5 Simplify the following.
$2 \sqrt{45}+3 \sqrt{50}-6 \sqrt{8}+4 \sqrt{20}$

Multiplying Radicals

Radicals with the same index can be multiplied by multiplying their \qquad . If each radical has a \qquad these are multiplied together.

Example 6 Simplify the following.
$3 \sqrt{10} \cdot 7 \sqrt{2}$

$$
2 \sqrt{7} \cdot 5 \sqrt{14}
$$

If binomial expressions are being multiplied, then we can use the \qquad .

Example 7 Simplify the following.
$3 \sqrt{2}(\sqrt{5}+4 \sqrt{2})$

Example 8 Simplify the following.
$(2+\sqrt{5})(7-6 \sqrt{5})$

Dividing Radicals

When dividing radicals, it is considered good practice to ensure the \qquad is \qquad , in a process called \qquad .

If the \qquad has \qquad term, we can multiply by an appropriate radical to make it
\qquad In the case of a square root, we can use the \qquad .

Example 9 Rationalize the denominators.
$\frac{3 \sqrt{7}}{5 \sqrt{3}}$
$\frac{4 \sqrt[3]{6}}{3 \sqrt[3]{2}}$

If the \qquad has \qquad terms involving square roots (but not higher roots), we can make it \qquad by multiplying by its \qquad , following the same process we used for dividing complex numbers in section 4.1.

Example 10 Rationalize the denominator.
$\frac{6 \sqrt{2}+7 \sqrt{3}}{3 \sqrt{2}+5 \sqrt{3}}$

7.2 Rational Exponents

Review of Exponents

An \qquad is used to indicate repeated \qquad of a number called the \qquad .
where n is the \qquad and a is the \qquad .

Exponent Quotient Rule

Negative Exponent Rule

Special Value One

Rational Exponents

When an exponent is a \qquad it is known as a \qquad . We can use the
\qquad to help evaluate them.

Example 1 Evaluate the following.
$81^{3 / 4}$
$8^{7 / 3}$

Let's take a closer look at the last example and consider what $8^{7 / 3}$ actually means. Recall that an
\qquad indicates how many times the \qquad is multiplied by itself. From the diagram it's simple to see that, for instance, multiplying by 8 \qquad times results in $8^{3}=$

But what does it mean to multiply 8 seven-thirds times, since it is not an \qquad ? Consider that multiplying by 8 once is the same as multiplying by \qquad three times. It follows that multiplying by 8 "one-third times" is equivalent to multiplying by \qquad -.

Finally, this means that multiplying by 8 seven-thirds times is the same as multiplying by \qquad
\qquad times, and that $8^{7 / 3}=$

Roots and Exponents

Consider the following:
$\sqrt{36}$
$(\sqrt[4]{81})^{3}$

$$
(\sqrt[3]{8})^{7}
$$

Notice that we're performing the \qquad as the example above, with the
\qquad of the root taking the place of the \qquad of the exponent. This is because radicals and rational exponents are \qquad .

Proof

Example 2 Write the following in exponent form.
$\sqrt[5]{11}$
$\sqrt{6^{9}}$
$(\sqrt[4]{21})^{13}$

Example 3 Write the following in radical form.
$7^{1 / 6}$
$31^{5 / 3}$
$10^{11 / 2}$

Example 4 Evaluate the following.
$25^{1 / 2}$
$32^{3 / 5}$
$343^{4 / 3}$

Example 5 Simplify the following.
$(\sqrt[4]{x})^{12}$
$\sqrt[6]{x^{3}}$
$\sqrt[12]{16}$

7.3 Square Root Equations

Recall that to solve rational equations, we converted them into polynomial equations, which we then solved using the usual methods. For equations with \qquad we can take a similar approach.

Like rational equations, equations with \qquad can have \qquad so each solution needs to be checked against the \qquad .

Example 1 Solve $x=\sqrt{7 x+15}-1$.

Step 1: Rearrange the equation to isolate the \qquad	
Step 2: Eliminate the \qquad by \qquad both sides.	
Step 3: Solve the resulting equation.	
Step 4: Check for \qquad solutions.	
Step 5: State the ___ solutions.	

Equations with \qquad square roots are more challenging to solve, and require \qquad more than once, as only one root can by \qquad at a time. Care is needed to apply the
\qquad rule appropriately.

Example 2 Solve $\sqrt{x+4}+3=\sqrt{7 x+1}$.

7.4 Square Root Functions

Functions which contain a \qquad can be called \qquad . For this class, we will consider \qquad and \qquad functions. ${ }^{1}$

parent function
domain
range
relation type
x-intercept
y-intercept
endpoint

!		!	,		!	,	!		
-		-	-	-	-		,		
-		!	!	!	!	-	!		
- +		-	--	$-+$	--	-	-	- -	
!		!	,	-	!	!	-		
${ }^{-1}$	I	--	-	${ }_{T}^{+}$!	-	-	- ${ }^{\text {T }}$	
-		i	-	-	-	-	I		
-	「-	-	-	\dagger^{+}	「-	-	-	-	
!		I	-	I	I	!	!		
+		-	--1		-	--	-		
-		!	!		-	-	!		
$\stackrel{-+}{-}$		-	-		+-	${ }^{-1}$	-		
-		!	-		I	I	I		
-		!	-		-	!	:		
!		I	-	1	-	-	!		
-		,	!		I	!	!		
,		!	!		,	,	!		
-					!		,		
!		-	-		-	I	!		
,		-			!	-	+		

As the inverse of \qquad functions, square root functions have \qquad for their curves, though facing a different direction. Half of the \qquad is missing; if the bottom half was present, it would not be a \qquad .

Because the square root is \qquad for \qquad numbers, all the \qquad real numbers are excluded from the \qquad of the parent function. We need to make sure that all square roots have only \qquad numbers or \qquad under them.

[^11]Example 1 Find the domain and range of $f(x)=-2 \sqrt{x+4}+6$.

Example 2 Find the domain and range of $g(x)=\sqrt{-6(x-2)}+5$.

By applying \qquad to the parent function, we get the \qquad of the square root function:

Recall from section 1.4 that n represents

- a reflection across the y-axis if \qquad
- a stretch from the y-axis by a factor of $\frac{1}{|n|}$ if \qquad
- a compression toward the y-axis by a factor of $|n|$ if \qquad
For our previous parent functions, their symmetry meant that all reflections could be represented with only A. This function has no symmetry, so n is needed as well.

A sketch of a square root function should include:

shape of curve	
x-intercept	
y-intercept	
endpoint	

Example 3 Sketch a graph of $f(x)=-2 \sqrt{x+4}+6$.
x-intercept:
y-intercept:
endpoint:

Example 4 Sketch a graph of $g(x)=\sqrt{-6(x-2)}+5$.
x-intercept:
y-intercept:

endpoint:

Example 5 List the transformations required to transform $f(x)=x^{1 / 2}$ to $g(x)=(-2 x+5)^{1 / 2}-3$.

Example 6 Find the function f represented by the following graph.

Example 7 The parent function $f(x)=\sqrt{x}$ is compressed toward the x-axis by a factor of 5 . What horizontal transformation results in the same function?

7.5 Cube Root Functions

parent function
domain
range
relation type
x-intercept
y-intercept
point of inflection ${ }^{2}$

Unlike the square root, the cube root can be evaluated for \qquad real numbers, which simplifies finding the \qquad and \qquad for cube root functions, which are both
\qquad if there is no domain restriction.

As the inverse of the \qquad parent function, $y=x^{3}$, the curve of the \qquad function has the same shape, \qquad over the line $y=x$.

Using \qquad , we can write the general form for a cube root function

[^12]Example 1 Sketch a graph of $f(x)=-3(x-8)^{1 / 3}+6$.
point of inflection:
x-intercept:
y-intercept:

endpoints:

Example 2 Find the function g represented by the following graph.

7.6 Quadratics, Cubics and Roots as Inverses

Recall the following theorem:

Theorem

$$
\begin{aligned}
& \text { A function } f \text { has an } \\
& \text { if and only if } f \text { is a function. } f^{-1}
\end{aligned}
$$

A cubic function of the form $f(x)=A(x-h)^{3}+k$ is \qquad , so it will always have an
\qquad . The \qquad will be a \qquad function.

A quadratic function is more challenging because it is
\qquad , so does not have an \qquad
To get around this problem, we can restrict the \qquad of the function.

The resulting \qquad will be a \qquad function.

Theorem

Suppose f is a \qquad function, and that $y=f(x)$ has a \qquad at (h, k).

If the domain of f is \qquad or \qquad then f is \qquad .

It is easiest to find the inverse of a quadratic functions in \qquad form.

Example 1 Consider the function $f:[2, \infty) \rightarrow \mathbb{R}$, where $f(x)=(x-2)^{2}-4$.
a) Show that the inverse function f^{-1} exists.
b) Find the range of f, and hence, the domain of f^{-1}.
c) Find the rule for f^{-1}.
d) Use the graph of $y=f(x)$ shown to plot $y=f^{-1}(x)$ on the same plane.

Example 2 Find the inverse function of $g(x)=-2 \sqrt{x-5}+3$, and state the domain and range for each of g and g^{-1}.

Example 3 Find the inverse function of $f(x)=[5(x+4)]^{1 / 3}-9$.

Example 4 Find the inverse function of $g(x)=-\frac{3}{4}(2 x-7)^{3}+5$.

Chapter 8
 Exponential and Logarithmic Functions

8.1 Exponential Functions 136
8.2 Logarithms 139
8.3 Logarithmic Functions 142
8.4 Natural Exponents and Logarithms 145
8.5 Exponential and Logarithmic Equations 149
8.6 Exponential Regression 151

8.1 Exponential Functions

An \qquad is a function of the form
where the \qquad , b, is a positive real number which is not 1 . The simplest cases have $A=1$ and $k=0$, such as with the following two examples.

functions
domain
range
relation type
x-intercept
y-intercept
horizontal asymptote

For $b>1$, including $b=2$ above, the function shows \qquad , which means as the function increases, the rate of increase is also increasing proportionally.

For $0<b<1$, including $b=\frac{1}{2}$ above, the function shows \qquad , which means as the function decreases, the rate of decrease is also decreasing proportionally.

A sketch of an exponential function should include:

shape of curve	
x-intercept	
y-intercept	
asymptote	
endpoints	

It is a good idea to show an additional point, such as $(1, f(1))$, to show the rate of growth or decay.

Example 1 Sketch a graph of $f(x)=\frac{1}{2} 3^{x}-\frac{9}{2}$.
x-intercept:
y-intercept:
asymptote:
endpoints:

Example 2 Identify the function g represented in the graph below.

Example 3 Sketch a graph of $g(x)=4^{\left(\frac{3}{2} x-1\right)}+1$.
x-intercept:
y-intercept:
asymptote:
endpoints:

Example 4 Suppose f is an exponential function, whose graph $y=f(x)$ passes through the points $(2,2)$ and $\left(5, \frac{1}{4}\right)$, and has an asymptote $y=0$. Find the rule for $f(x)$.

8.2 Logarithms

Consider the equation $3^{x}=243$, whose solution is the answer to the question

The diagram illustrates that the solution is

The mathematical operation which answers the question above is the \qquad . This particular case is written
which is read as "the \qquad 3 of 243." In general,

Example 1

$$
\begin{array}{ll}
\log _{5} 125= & \text { because } \\
\log _{2} 256= & \text { because } \\
\log _{4} \frac{1}{16}= & \text { because } \\
\log _{7} \sqrt{7}= & \text { because }
\end{array}
$$

Note that if the base is omitted, it is assumed to be \qquad . This is sometimes known as a
\qquad logarithm.

Example 2

$$
\begin{array}{ll}
\log 10000= & \text { because } \\
\log 0.001= & \text { because }
\end{array}
$$

Example 3 Write the following equations in logarithmic form.
$a=3^{b}$
$s=t^{k}$
$p=10^{r}$

Example 4 Write the following equations in exponential form.
$u=\log _{2} v$
$m=\log n$
$w=\log _{y} z$

Logarithm Rules

Recall that we reviewed the \qquad in section 7.2. Some of those rules can be rewritten as equivalent \qquad .

Exponent Product Rule $a^{m} \cdot a^{n}=a^{m+n}$	Logarithm Product Rule
Exponent Quotient Rule $\frac{a^{m}}{a^{n}}=a^{m-n}$	Logarithm Quotient Rule
Exponent Power Rule $\left(a^{m}\right)^{n}=a^{m n}$	Logarithm Power Rule
Negative Exponent Rule $a^{-n}=\frac{1}{a^{n}}$	Reciprocal Logarithm Rule
Exponent Special Values $a^{0}=1 \quad a^{1}=a$	Logarithm Special Values

Example 5 Simplify the following without using a calculator.

$$
2 \log _{6} 3+\log _{6} 4 \quad \log _{5} 8-\log _{5} 1000
$$

The Change of Base Rule

Recall from section 7.2 that we used the following diagram to illustrate $8^{7 / 3}=128$:

We can state this in logarithmic form as

When we originally calculated this, it was difficult to think of \qquad as a power of \qquad Instead, we expressed both numbers using \qquad as the \qquad , which in logarithmic form are

Equivalently, we can write
This is an example of the following rule:

Theorem: Change of Base Rule

Example 6 Use the change of base rule to simplify the following.
$\log _{27} 81$
$\log _{25} \sqrt[3]{5}$

8.3 Logarithmic Functions

A \qquad is a function of the form
where the \qquad ,b, is a positive real number which is not 1 . The simplest cases have $n=1$ and $h=0$, such as with the following two examples.

functions
domain
range
relation type
x-intercept
y-intercept
vertical asymptote

Example 1 Express $f(x)=\log _{5}(x)+2$ in the form stated above.

Example 2 Express $g(x)=\frac{1}{3} \log _{2}(x)$ in the form stated above.

A sketch of an logarithmic function should include:

shape of curve	
x-intercept	
y-intercept	
asymptote	

Example 3 Sketch a graph of $f(x)=\log _{2}\left[\frac{1}{3}(x-4)\right]$.
x-intercept:
y-intercept:
asymptote:
other point:

Example 4 Identify the function g represented in the graph below.
 asymptote: x-intercept:
point:

Exponential and Logarithmic Functions as Inverses

The \qquad of an exponential function is a \qquad function with the same \qquad .

This means that the inverse of $f(x)=a^{x}$ is \qquad .

Example 5 Find the inverse function of $f(x)=15 \cdot 3^{x}+2$, and state the domain and range for each of f and f^{-1}.

Example 6 Find the inverse function of $g(x)=\log [6(x-4)]$, and state the domain and range for each of g and g^{-1}.

8.4 Natural Exponents and Logarithms

The Base e

Observe the following graphs of $y=2^{x}, y=3^{x}$ and $y=5^{x}$.

You should recall that changing the \qquad of the exponent does not change the \qquad which is $(0,1)$ for each curve. However, changing the \qquad does change how steep the curve is at this point. This is represented by the dashed line, which is the \qquad to the curve at the y-intercept. ${ }^{1}$ Notice that the \qquad of these tangents are decimal values, which each turn out to be irrational.

We might wonder if it's possible for the slope of this tangent to have an exact integer value, such as 1 . As it happens, this occurs when the
\qquad is a particular \qquad constant, which we denote e, and has the value

$$
e=2.71828182845904523536 \ldots
$$

The relationship between a function and the slopes of its tangents is the basis for much of calculus, which makes the function $f(x)=e^{x}$ very important. e shows up in many other areas of math also, as well as being used in science, engineering, finance and many other applications.

For Algebra 2, we need to know of the existence of e and that it is closely related to exponents and logarithms. However, we don't need to worry if we don't yet understand why it is important or where it comes from.

When exponents or logarithms have e as their \qquad , they are called \qquad . All exponential and logarithmic functions can be written as transformations of \qquad exponents and logarithms, so we can use these as \qquad .

The \qquad is important enough that it gets its own notation:

[^13]
Natural Exponents

The parent function for natural exponents is \qquad , which leads to the general form

Instead of changing the \qquad to control the rate of exponential \qquad or \qquad , we can change the value of n. If n is \qquad , the function exhibits exponential \qquad . If n is \qquad , the function exhibits exponential \qquad .

Example 1 Plot the points at $x=0,1,2$ on each of the following graphs, and label them with exact coordinates.

Since e^{x} and $\ln x$ are \qquad , we can use the result $e^{\ln a}=a$ to change the base of an exponent to e :

Example 2 Express $f(x)=5 \cdot 4^{x}$ using e as the base.

Example 3 Express $g(x)=3 \cdot\left(\frac{1}{8}\right)^{x}$ as a natural exponential function.

Example 4 Identify the function f represented in the graph below.

Natural Logarithms

The parent function for natural logarithms is
\qquad , which leads to the general form

Instead of changing the \qquad to control the
\qquad and \qquad of the logarithmic curve, we can change the value of A.

We already have the \qquad which we can use to change logarithms to their natural form:

Example 5 Express $f(x)=\log _{4} 3 x$ using the natural logarithm.

Example 6 Express $g(x)=\log _{0.2} x$ using the natural logarithm.

Example 7 Identify the function g represented in the graph below.

Example 8 Find the inverse function of $f(x)=20 e^{-0.001 x}+5$. State the domain and range of each f and f^{-1}.

8.5 Exponential and Logarithmic Equations

Method 1: Equating the Base

The simplest method to solve equations involving \qquad or \qquad is often to write \qquad with the same \qquad . Then we can use the following theorem.

Theorem

Two exponential expressions with the same \qquad are \qquad iff (if and only if) they have the same \qquad .

Example 1 Solve $81^{2 x+1}=\sqrt{3}$.
Example 2 Solve $6^{5 x+3}=36^{4 x+9}$.

This applies equally to \qquad , as they are the \qquad of \qquad . You'll need to check for extraneous solutions.

Example 3 Solve $\log (4 x-2)-\log (x-5)=1 . \quad$ Example 4 Solve $2 \ln (x)=\ln (2 x+3)$.

Method 2: Using Inverse Operations

Since exponents and logarithms are \qquad of each other, we can use them to solve equations involving the other. The solutions obtained when using this method are often \qquad .

Example 5 Solve $\log _{3}(x+9)=2$.

Example 7 Solve $4^{2 x-3}=20$
to 2 decimal places.

Example 6 Solve $3 e^{x / 4}+4=10$ exactly.

Example 8 Solve $2 \ln (x-1)+5=1$ to 3 decimal places.

Method 3: Using a Substitution

Sometimes we can change an equation to a simplified form using a thoughtful \qquad .

Example 9 Solve $3^{2 x}-6 \cdot 3^{x}-27=0$.

8.6 Exponential Regression

Recall that \qquad is the process of fitting a modeling function to a set of data in order to approximate the relationship between variables.
\qquad uses an \qquad function for the modelling function.

This means choosing values for \qquad and \qquad so that \qquad fits the data as well as possible.

Like linear and quadratic regression, performing \qquad involves calculating
the the \qquad , denoted by \qquad , which measures how well the regression curve fits the data.

If your device or software offers "log mode" for this type of regression, this generally provides a better fit. Some devices do this by default. ${ }^{2}$

Example 1 A research lab is investigating the population of a sample of bacteria. After leaving the sample for 24 hours at a time, the number of bacteria is estimated and recorded. Let t be the number of days after the beginning of the experiment.

t (days)	1	2	3	5	6	7
p	5.74×10^{5}	1.85×10^{6}	7.49×10^{6}	7.43×10^{7}	2.17×10^{8}	8.79×10^{8}

Use exponential regression to model bacteria population.

Example 2 Predict the population at the beginning of the experiment.

Example 3 The researchers weren't able to collect data on day 4. Estimate what the population would have been that day.

[^14]
Chapter 9
 Further Functions

9.1 Identifying Functions 154
9.2 Algebraic Combinations of Functions 156
9.3 Function Composition 158
9.4 Piecewise Functions 161

9.1 Identifying Functions

Review of Parent Functions

$$
f(x)=x
$$

$f(x)=x^{3}$

$f(x)=\sqrt{x}$

$$
f(x)=\ln x
$$

$f(x)=|x|$

$f(x)=\frac{1}{x}$

$f(x)=\sqrt[3]{x}$

$f(x)=x^{2}$

$f(x)=\frac{1}{x^{2}}$

$f(x)=e^{x}$

Recall that we can use these \qquad , together with \qquad , to construct functions. By identifying these in a \qquad , we can identify the corresponding \qquad .

Example 1 Identify the function f represented in the graph below.

Example 2 Identify the function g represented in the graph below.

9.2 Algebraic Combinations of Functions

By \qquad functions in a variety of ways, we can create \qquad . The simplest thing we can do is to \qquad , \qquad or \qquad functions.

- If $h=f+g$, then $h(x)=f(x)+g(x)$ for each value of x.
- If $h=f-g$, then $h(x)=f(x)-g(x)$ for each value of x.
- If $h=f \cdot g$, then $h(x)=f(x) g(x)$ for each value of x.

Note that for each of these cases, $h(x)$ is only \qquad if both $f(x)$ and $g(x)$ are \qquad .
This means that the \qquad of h is the \qquad of the \qquad of f and g.

We can also \qquad functions.

- If $h=f / g$, then $h(x)=\frac{f(x)}{g(x)}$ for each value of x.

In this case, we need to remember that we can't divide by \qquad . So $h(x)$ is only \qquad if both $f(x)$ and $g(x)$ are \qquad and $g(x) \neq 0$.

Example 1 Complete the table.

x	-2	-1	0	1	2	3	4
$f(x)$	undef	2	6	0	1	3	-2
$g(x)$	3	0	2	4	undef	1	-2
$(f+g)(x)$							
$(f-g)(x)$							
$(f \cdot g)(x)$							
$(f / g)(x)$							

Example 2 State the domains of all of the functions in example 1.

Example 3 State the rule for $h=f+g$ if $f(x)=\ln (x+3)$ and $g(x)=\frac{1}{x-5}$. Find the domains of f, g and h.

In the previous example, the domain of the combined function could be identified from its rule as the implied domain.

In the following examples, we'll find that the domain of the combined function is different from the domain implied by its rule.

Example 4 Find and simplify the rule for $w=u \cdot v$ if $u(x)=\frac{1}{x+1}$ and $v(x)=x^{3}+3 x^{2}+3 x+1$. Find the domains of u, v and w.

Example 5 Find and simplify the rule for $h=f / g$ if $f(x)=(x+3) e^{-x}$ and $g(x)=x^{2}-4 x-21$. Find the domains of f, g and h.

9.3 Function Composition

Another way to combine functions is \qquad , which means using the \qquad of one function as the \qquad of another. The \qquad of f and g is denoted $f \circ g$, and the function is defined as

Note that the \qquad matters, because \qquad f and g results in a different function.

Example 1

a) Complete the mapping diagram for $g \circ f$.
b) Are there any values for which $f \circ g$ is defined?

$$
g \circ f: U \rightarrow W
$$

Example 2 Use the function definitions to evaluate the compositions.

x	$f(x)$
0	4
1	3
2	0
3	1
4	5
5	6
6	2

$(g \circ f)(3)$
$(f \circ g)(6)$
$(g \circ f)(2)$
$(g \circ g)(2)$
$(f \circ f)(0)$
$(g \circ g)(3)$
$(f \circ g)(3)$

Example $3 f(x)=x^{2}+2 x$ and $g(x)=3 x-5$. Find $g \circ f$ and $f \circ g$.

Example $4 \quad f:[-3,6] \rightarrow \mathbb{R}$ where $f(x)=x^{2}$, and $g:(0,11) \rightarrow \mathbb{R}$ where $g(x)=x-7$. Find $f \circ g$, and find its domain and range.

Composition with the Inverse

With \qquad we can show that two functions are \qquad , using the following theorem.

Theorem

$$
\begin{aligned}
& f: A \rightarrow B \text { and } f^{-1}: B \rightarrow A \text { are functions } \\
& \text { iff }\left(f^{-1} \circ f\right)(x)=f^{-1}[f(x)]=x \text { for every } x \in A \\
& \text { and }\left(f \circ f^{-1}\right)(x)=f\left[f^{-1}(x)\right]=x \text { for every } x \in B
\end{aligned}
$$

Example 5 Show that $f(x)=5 e^{x}-8$ and $g(x)=\ln \left[\frac{1}{5}(x+8)\right]$ are inverses.

Example 6 Show that $f:[4, \infty) \rightarrow \mathbb{R}$ where $f(x)=x^{2}-8 x+21$ and $g(x)=\sqrt{x-5}+4$ are inverses.

9.4 Piecewise Functions

We previously discussed piecewise functions in section 2.5 , but only considered functions with
\qquad pieces. In general, any function can be a piece of a piecewise function. For this course, we'll include \qquad and \qquad pieces.

Example 1 Evaluate each of the following using the function f.

$$
f(x)= \begin{cases}x^{2}+2 & 0 \leq x<3 \\ 16 \cdot 2^{-x} & 3 \leq x<6 \\ -x+11 & 6 \leq x<10\end{cases}
$$

$f(1)$
$f(8)$
$f(5)$
$f(6)$
$f(3)$
$f(10)$

Example 2 For function f above, plot its graph and find its domain and range.

Domain:

Range:

Example 3 Consider the function g defined as

$$
g(x)= \begin{cases}x^{2}-8 x+12 & 1<x \leq 5 \\ -3 & 5<x<8 \\ -x^{2}+20 x-99 & 8 \leq x \leq 13\end{cases}
$$

a) Find the zeros of g.
b) Find the intervals g is increasing, decreasing, or constant.

Example 4 Find the function h represented in the graph below.

Chapter 10
 Matrices

10.1 Matrix Operations 164
10.2 Solving Linear Systems with Matrices 166

10.1 Matrix Operations

A \qquad (plural \qquad) consists of numbers arranged into \qquad and \qquad
in a rectangle. It is typical to assign them \qquad variables, and to surround them with \qquad .${ }^{1}$

For example,

$$
A=\left[\begin{array}{ccc}
3 & 7 & -2 \\
9 & -4 & 1
\end{array}\right]
$$

The \qquad of a matrix denote the number of \qquad , m, by the number of \qquad , n, which we write as \qquad , and read as \qquad .

For example, the \qquad of A above are \qquad , or we say A is a \qquad .

The individual \qquad of a matrix are denoted by \qquad , where a is the lower case letter corresponding to the matrix variable, i indicates which \qquad , and j indicates which \qquad .

Example 1 Write the following using A above.
$a_{1,2}$
$a_{2,1}$
$a_{1,3}$
A matrix with the same number of \qquad and \qquad , or an \qquad is called a \qquad .

An \qquad is a square matrix with \qquad along its \qquad (top-left to bottom-right), and \qquad everywhere else. If the \qquad is $n \times n$, it is denoted I_{n}.

Example 2 Write down I_{3}.

Example 3 If $B=I_{7}$, find $b_{4,2}$ and $b_{5,5}$.

[^15]
Adding and Subtracting Matrices

Matrices can be added or subtracted by adding or subtracting individual \qquad in
\qquad . This is only possible if the matrices have the same
\qquad , and the resulting matrix will also have the same \qquad .

Example 4 If $C=\left[\begin{array}{cc}3 & 6 \\ -5 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}-7 & 8 \\ 2 & -4\end{array}\right]$, find $C+D$ and $C-D$.

Multiplying a Matrix and a Scalar

To distinguish them from matrices, individual numbers are called \qquad .

A \qquad cannot be added to or subtracted from a matrix, but it can be \qquad . To do so, we multiply each \qquad in the matrix by the scalar. The result is a \qquad with the same \qquad as the original matrix.

Example 5 Using $A=\left[\begin{array}{ccc}3 & 7 & -2 \\ 9 & -4 & 1\end{array}\right]$, find $-5 A$.

Example 6 Find $3 D-4 C$, using C and D above.

10.2 Solving Linear Systems with Matrices

We can take a system of linear equations at write them as a single matrix equation:

$$
\begin{gathered}
\begin{cases}a_{1,1} x+a_{1,2} y+a_{1,3} z= & b_{1} \\
a_{2,1} x+a_{2,2} y+a_{2,3} z= & b_{2} \\
a_{3,1} x+a_{3,2} y+a_{3,3} z & b_{3}\end{cases} \\
\text { where } \quad A=\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right] \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{gathered}
$$

Then we can solve the matrix equation. The techniques used are beyond the scope of this course, and tedious to perform by hand anyway, but are simple for a calculator.

Reduced Row Echelon Form

Step 1: Write matrices A and B together, which is called an \qquad matrix.

$$
[A \mid B]=\left[\begin{array}{lll|l}
a_{1,1} & a_{1,2} & a_{1,3} & b_{1} \\
a_{2,1} & a_{2,2} & a_{2,3} & b_{2} \\
a_{3,1} & a_{3,2} & a_{3,3} & b_{3}
\end{array}\right]
$$

Step 2: Apply the operation \qquad to the matrix using a calculator. This applies a series of operations which are equivalent to solving the system using the elimination method.

Step 3: Interpret the solution from the resulting matrix.

Example 1 Solve

$$
\left\{\begin{aligned}
x+y+z & =6 \\
2 x-y+3 z & =11 \\
-x+3 y+4 z & =8
\end{aligned}\right.
$$

Notice that A has been replaced with the \qquad . This will always happen if there is a \qquad to the system. If not, then the matrix takes a different form.

Example 2 Solve

$$
\left\{\begin{aligned}
5 x-3 y+z & =-5 \\
2 x+y+3 z & =9 \\
7 x-2 y+4 z & =12
\end{aligned}\right.
$$

Example 3 Solve

$$
\left\{\begin{aligned}
5 x-3 y+z & =-5 \\
2 x+y+3 z & =9 \\
7 x-2 y+4 z & =4
\end{aligned}\right.
$$

Determinants

An important property of a \qquad is its \qquad . It is denoted by
\qquad replacing the brackets around the matrix. The \qquad of a matrix
A can be written \qquad or \qquad .

Determinant

The determinant of a 2×2 matrix is given by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

The determinant can be found for larger $n \times n$ matrices, but becomes much more complicated. It is much easier to find using a calculator.

Example 4 Find the following determinants.

The following result is particularly useful for linear systems.

Theorem

A linear system, written in the matrix form $A X=B$,
has a \qquad iff

Example 5 Confirm the nature of the solutions for the systems in the earlier examples.

Chapter 11

Sequences and Series

11.1 Introduction to Sequences and Series 170
11.2 Arithmetic Sequences and Series 174
11.3 Geometric Sequences and Series 176

11.1 Introduction to Sequences and Series

Sequences

A \qquad is a collection of mathematical objects (in this class, numbers) in a specific
\qquad . Unlike in \qquad , the numbers in a \qquad may be \qquad .

Example 1 The sequence of all positive odd integers less than 20, in descending order, is

The individual entries in a sequence are known as \qquad Each \qquad can be identified using a lower case letter (we'll typically use \qquad) with a \qquad indicating its position in the sequence.

Example 2 Find each of the following for the sequence above.
$a_{1} a_{3} \quad a_{6} \quad a_{10}$

If a sequence ends after a certain number of terms, it is \qquad . Otherwise, it is \qquad .

While any numbers can be placed in an order to form a sequence, we're particularly interested in sequences which can be formed using a \qquad .

Explicit Rules

An \qquad calculates the value of each term using its position in the sequence.

Example 3 Calculate the first 6 terms of the sequence $a_{n}=n^{2}+1$.

n	calculation	a_{n}
1		
2		
3		
4		
5		
6		

Recursive Rules

The word \qquad refers to definitions or processes which refer to themselves in some way. A \qquad calculates the value of each term using the values of the previous term, or possibly multiple previous terms.

If we think of a_{n} as the \qquad term, then a_{n-1} is the \qquad term, and a_{n+1} is the
\qquad term.

These rules require at least one \qquad , a term that isn't defined \qquad .

Example 4 Calculate the first 6 terms of the sequence $a_{n}=2 a_{n-1}-3$, with $a_{1}=5$.

n	calculation	a_{n}
1		
2		
3		
4		
5		
6		

Example 5 List the first 10 terms of the Fibonacci sequence, defined as $f_{n}=f_{n-2}+f_{n-1}$, with $f_{1}=f_{2}=1$.

Types of Sequences

An \qquad has a constant \qquad between consecutive terms:

A \qquad has a constant \qquad between consecutive terms:

Example 6 Determine whether the following sequences are arithmetic, geometric or neither.
$1,5,9,13,17,21, \ldots$
$12,6,3,1.5,0.75,0.375, \ldots$
$1,2,6,24,120,720, \ldots$
$8,8,8,8,8,8, \ldots$

Sums and Sigma Notation

Recall that the \qquad of a collection of numbers is the result obtained by \qquad them.

Example 7 Find the sum of $2,4,6,8,10$ and 12.

We can write this sum more concisely using the upper case Greek letter \qquad Σ.

- Below Σ, we have the \qquad , k, and its \qquad , 1.
- Above Σ, we have the \qquad of the indexing variable, 6 .
- After Σ, we have the quantity to be summed, which is \qquad the indexing variable in this case.

Example 8 Evaluate $\sum_{k=1}^{5} k^{2}$.

Example 9 Write $5+10+15+20+\cdots+100$ using sigma notation.

Series

A \qquad is the sum of the first n terms of a sequence ${ }^{1}$, which can be written as

Example 10 For $a_{n}=3 n+5$, find S_{8}.

n	calculation	a_{n}	S_{n}
1			
2			
3			
4			
5			
6			
7			
8			

Example 11 For $a_{n}=4 a_{n-1}-7$ with $a_{1}=3$, find S_{5}.

n	calculation	a_{n}	S_{n}
1			
2			
3			
4			
5			

[^16]
11.2 Arithmetic Sequences and Series

Recall that an \qquad has a constant \qquad between consecutive terms:

Theorem

The recursive rule for an arithmetic sequence with difference d is

Example 1 Find the recursive rule for the sequence $5,2,-1,-4,-7, \ldots$

Example 2 An arithmetic sequence begins with -2 and 4. State its recursive rule and find the first 8 terms of the sequence.

We can use the recursive rule repeatedly to find expressions for the terms following a_{1}.
$a_{2} \quad a_{3} \quad a_{4} \quad a_{5}$

Theorem
The explicit rule for an arithmetic sequence with difference d and first term a_{1} is

The related function $f(n)=a_{n}$ is \qquad .

Example 3 Find the 50th term of the sequence $1,5,9,13,17, \ldots$

Example 4 In the sequence $a_{n}=a_{n-1}-9, a_{1}=500$, which term is equal to $221 ?$

Theorem

The finite series of an arithmetic sequence given by a_{n} is

Example 5 For $a_{n}=a_{n-1}-4, a_{1}=88$, find the sum of the first 40 terms.

Example 6 Find the sum of the odd numbers between 0 and 200.

11.3 Geometric Sequences and Series

Recall that a \qquad has a constant \qquad between consecutive terms:

Theorem

The recursive rule for a geometric sequence with ratio r is

Example 1 Find the recursive rule for the sequence $\frac{1}{18}, \frac{1}{3}, 2,12,72, \ldots$

Example 2 An geometric sequence begins with -2 and 4 . State its recursive rule and find the first 8 terms of the sequence.

We can use the recursive rule repeatedly to find expressions for the terms following a_{1}.

$$
a_{2} \quad a_{3} \quad a_{4} \quad a_{5}
$$

Theorem

The explicit rule for a geometric sequence with ratio r and first term a_{1} is

The related function $f(n)=a_{n}$ is \qquad .

Example 3 Find the 12 th term of the sequence $640,320,160,80, \ldots$

Example 4 Which term of the sequence $a_{n}=5 a_{n-1}, a_{1}=3$ is the first to be greater than 1 billion?

Theorem

The finite series of a geometric sequence given by a_{n} is

Example 5 For $a_{n}=\frac{1}{2} a_{n-1}, a_{1}=100$, find the sum of the first 8 terms.

Example 6 If the sum of the first 4 terms of $a_{n}=3 a_{n-1}$ is 480 , what are those 4 terms?

Chapter 12

Data and Statistics

12.1 Statistical Concepts 180
12.2 Normal Distributions 183
12.3 Bivariate Data 185
12.4 Collecting and Presenting Data 188

12.1 Statistical Concepts

In the field of statistics, a \qquad is a characteristic of a person or thing, which can have different values for each person or thing. A recorded value of a variable is called a \qquad , the plural of which is \qquad . The two main types of variables are

- \qquad , whose data are numerical values for which it makes sense to use with arithmetic operations, and
- \qquad , whose data place the people or things into groups or categories.

In this class, we'll mostly focus on quantitative variables and data.

Example 1 Decide if the following are quantitative or categorical.

- The salary of a software engineer. \qquad
- The fur color of a pet cat. \qquad
- The zip code of a customer. \qquad
- The weight of a football player. \qquad
- The number of students in an Algebra 2 class. \qquad

In this section, we'll focus on \qquad , which is data for a single variable.

A \qquad is a single measure which summarizes a characteristic of a collection of data.

Measures of Central Tendency

A \qquad is a statistic which uses a single number to represent an entire set of data.

- The \qquad is the sum of the data values divided by their number:
- The \qquad is the value in the \qquad when the data are ordered, or the \qquad of the middle two values.
- The \qquad is the \qquad value.

Example 2 Find the mean, median and mode of 2, 3, 3, 3, 4, 7, 7 and 11.

Measures of Spread

A \qquad is a statistic which indicates how far the data \qquad from the \qquad .

- The \qquad measures spread using the differences of each value from the mean, and is calculated with the formula:
- The \qquad is the square root of the \qquad and is used more often as it shares the same \qquad as the data:
- The \qquad is the difference between the smallest and largest values.
- The \qquad , or \qquad , is the difference between Q_{1} and Q_{3}, which are the medians of the lower and upper halves of the data respectively.

Example 3 Find the standard deviation of the values in the previous example.

x	$x-\bar{x}$	$(x-\bar{x})^{2}$

Skewed Distributions

Examining a \qquad representing a set of univariate data can reveal characteristics of the data.

If the bulk of the data is situated toward one end of its range, the data is said to be \qquad . The direction of the \qquad is the same as the direction of the distribution's \qquad .

The \qquad is affected by skewed values more than other measures of central tendency, so the relationship between \qquad and \qquad can indicate the direction of any skewness.

Unimodal and Multimodal Distributions

Data distributions can also be characterized by the number of \qquad . It is typical to use the suffix \qquad to refer to these, even if the peaks do not have the same height, and therefore do not strictly meet the definition of the \qquad .

Distributions with more than one peak can also be called \qquad .

12.2 Normal Distributions

A \qquad is a type of probability distribution. Each normal distribution is defined by two \qquad :

- The \qquad , represented by μ (lower case Greek letter mu).
- The \qquad represented by σ (lower case Greek letter sigma).

The normal distribution can be graphed using a \qquad , which is sometimes called a
\qquad -shaped curve. The area under the curve can be interpreted as probabilities in the related normal distribution.

- The distribution is \qquad , as it has one mode at the \qquad .
- The distribution is \qquad about the \qquad . \qquad of the area is less than the \qquad , and \qquad is greater than the \qquad .
- The 68-95-99.7 rule states that
- about \qquad of the area is within \qquad standard deviation of the mean,
- about \qquad of the area is within \qquad standard deviations of the mean, and
- about \qquad of the area is within \qquad standard deviations of the mean.

If a univariate data set is \qquad and \qquad , then it may be appropriate to use a normal distribution to \qquad the data. We can fit the distribution to the data by choosing parameters

Note the different symbols for mean and standard deviation. While we often choose them to have the same values, they have different meanings. \bar{x} and s are the \qquad calculated from the
\qquad , while μ and σ are the \qquad of the distribution.

If X is a random variable, then we can use the notation
to represent:

- The \qquad of individuals whose values which fall between a and b.
- The \qquad that an individual chosen at random has a value between a and b.

Example 1 The heights of a group of students are normally distributed with a mean of 5 ft 9 in and a standard deviation of 1.5 in .
a) Find the proportion of students whose heights are between 5 ft 7.5 in and 6 ft .

b) Find the probability that a randomly chosen student is taller than 5 ft 6 in .

Example 2 In a normally distributed data set, 84% of the data values are less than 29, and 2.5% of the data values are less than 17 . What are the mean and standard deviation?

12.3 Bivariate Data

When data is collected for two variables from the same set of subjects, it is called _. In these cases, our interest is in knowing if there is an \qquad between the variables, which means that changes in one variable tend to occur with changes in the other.

Review of Regression

A key tool we have for examining bivariate data is \qquad , as we've studied previously.

While we've used \qquad , \qquad and \qquad regression, and we'll continue to restrict ourselves to those three for this class, regression is possible using any type of function for which an association could exist.

Recall:

- The aim of \qquad is to find a \qquad which \qquad an \qquad between variables.
- The \qquad denoted by \qquad , is a number between 0 and 1 indicating how well the \qquad fits the data, with \qquad indicating a perfect fit.
- The \qquad , denoted by \qquad , is a number between -1 and 1 which indicates the \qquad and \qquad of the linear association between the two variables. For linear regression, \qquad .

Example 1 Find a function to model the data below.

x	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	5.0	4.3	3.9	3.7	4.1	5.0	6.3

Correlation and Causation

measures a linear relationship between variables by indicating how one variable changes as the other variable increases.

If increases in one variable sees proportionally similar \qquad in the other, there is a
\qquad between the variables, and r is close to \qquad . If increases in one variable sees proportionally similar \quad in the other, there is a
\qquad between the variables, and r is close to \qquad . In both
cases, there is a \qquad between the variables.

Suppose that there are two variables, X and Y, which have a \qquad .

As stated above, this means that as X increases, Y also increases at a proportionally similar rate. This does not mean, however, that an increase in X \qquad an increase in Y. There are actually three possibilities:

- Changes in X do indeed \qquad changes in Y.
- The causation is \qquad , and changes in Y \qquad changes in X.
- Changes in X and Y are both \qquad by changes in a \qquad .

Not understanding this (or deliberately ignoring this) leads many people to make \qquad not supported by the data. As you hear or read statistical conclusions made by others, or are trying to draw your own conclusions, it is vital to remember this principle:

Correlation vs. Causation

Example 2 This graph and the correlation coefficient $r=0.7485$ show that there is a fairly strong positive correlation between the number of broadband internet subscriptions in a country and the life expectancy in that country.

Is it reasonable to say that if a country wants to raise life expectancy, they should improve their internet infrastructure?

Life Expectancy vs. Broadband Internet Subscribers by Country, 2017

Sources:
https://data.worldbank.org/indicator/IT.NET.BBND.P2 http://gapm.io/ilex

Discrete and Continuous Models

A quantitative variable which can take only distinct, countably-many values is called \qquad .
These values generally arise from a \qquad process.

A quantitative variable which can take any value within an interval is called \qquad . These values generally arise from a \qquad process.

Distinguishing between the two is important for deciding how to create graphs modeling the variable.

Example 3 A local car dealer promises to sponsor the high school softball team $\$ 500$, plus $\$ 150$ for each run they score in the next game, up to a total sponsorship of $\$ 2000$. Create a graph relating sponsorship money to runs scored.

Independent Variable:
Dependent Variable:
Discrete/Continuous:
Domain:
Function:

12.4 Collecting and Presenting Data

The aim of \qquad is to understand \qquad about the world through the collection and interpretation of \qquad . Every day, people form \qquad and make \qquad based on the data that have been presented to them.

Unfortunately, data can be \qquad in ways that make them \qquad , or can be
\qquad in ways that are \qquad . While some people will \qquad data
in these ways deliberately, it is very easy to \qquad misuse data. Knowing how data can be misinterpreted helps us to avoid being \qquad by claims made by others, and to better
\qquad the data we collect ourselves.

Populations and Samples

If we're interested in data regarding a particular class of people or things, the \qquad is the entire set of people or things in that class.

Example 1 A medical researcher is collecting data about the weights of 15 year olds in Oklahoma. What is the population?

If data are collected from every individual in the population, the process is called a \qquad . This is ideal, as we know that the data truly represents the entire population. However, doing so is often impractical.

Instead, data are typically collected from a \qquad , which is a subset of the population which is intended to represent the entire population. The sample should contain a \qquad number of individuals to minimize the effect of random variation.

There are many different methods to select the sample, with varying quality. Here are a few common sampling methods:

- A \qquad selects the members of the sample from the entire population at random. This is usually best practice if possible. This can be as simple as drawing names from a hat, or can be done by assigning numbers to each individual and using a random number generator.
- A \qquad places individuals into groups, then randomly selects members from every group. This ensures that every group is represented in the sample.
- A \qquad places individuals into groups, then selects every member from randomly selected groups. This is often easier to administer, while still containing some randomness in the sample.
- A \qquad selects individuals who are willing to participate in a survey. Sometimes this is the only way to collect data, for legal or ethical reasons, but may introduce \qquad .
- A \qquad selects the individuals who are easiest to collect data from.

This almost certainly introduces \qquad . While this is a popular method because it is easy, informed statisticians should not use it.

Any factor that affects the data in a way such that they do not represent the true state of the population is called a \qquad . If the source of the \qquad is the way the sample was selected, it is called \qquad . Other \qquad include \qquad , which is where the presence of an \qquad affects the behavior or response of individuals in the sample.

Example 2 A business manager at a large company is concerned that many of her employees are spending a lot of time using social media when they should be working. She asks her assistant manager to conduct some research. He asks the first five people into the office the next day how much time they've wasted on social media. He reports to his boss that there is no social media problem at the company.

Are there any issues regarding the data collection in this scenario?

Recognizing Distorted Data Displays

Presenting data in a \qquad is a useful way to communicate and emphasize aspects of the data that are important to the author of the display. Unfortunately, it is possible to present data in ways that, while not false, are \qquad .

An important rule to remember when presenting data is the \qquad . This says that if a quantity is represented by a two-dimensional region in a graph, the \qquad of the region should be \qquad to the quantity.

Example 3

This chart violates the \qquad

Example 4

This chart violates the \qquad ,
because the \qquad on the pie chart causes some of the sectors to have additional
\qquad along the edge.

While they might look clever, using \ldots in data displays should always be \qquad -.

Example 5

This chart violates the \qquad
because the \qquad of the bars are not \qquad to their corresponding
\qquad - Even though Jones does have the highest favorability, the difference in favorability
\qquad to be much greater because the
bar's \qquad is much greater.

This occurs because the \qquad on the
\qquad has been \qquad .

A graph such as a line chart can also have a \qquad . In some cases, this is
\qquad when seeing trends and small changes is important, such as in \qquad . In general, however, readers will expect a \qquad scale beginning at \qquad .

[^0]: ${ }^{1}$ Many mathematicians would say the natural numbers also include 0 . If you want unambiguous terms, you can use positive integers to exclude 0 , and nonnegative integers include 0 .

[^1]: ${ }^{1}$ Even if it's a straight line, it's still called a "curve".
 ${ }^{2}$ Named after the 17 th Century French philosopher, René Descartes.

[^2]: ${ }^{3}$ You may think "as well as possible" is very vague. If so, you're right! The details of what this means are not important for Algebra 2, but they will be very important if you take a Statistics class in the future.

[^3]: ${ }^{4} \mathrm{~A}$ statistics class would teach you that R^{2} is the proportion of the variation in the dependent variable which is explained by the model. Don't worry if that doesn't make any sense yet!

[^4]: ${ }^{1}$ In an upcoming lesson, you will see that it is possible to get solutions that are not real numbers! For now, we're only considering the real numbers.

[^5]: ${ }^{2}$ We'll discuss polynomials in detail in a later chapter.

[^6]: ${ }^{1}$ Don't let the name fool you! Imaginary numbers may be abstract, but so are all numbers, and that doesn't mean they don't exist. Imaginary numbers have many applications in science and engineering. The mathematical terms real and imaginary are not entirely accurate, but they've been around for so long that we're stuck with them.

[^7]: ${ }^{2}$ Multiplicity will be discussed in more detail in the Polynomials chapter.

[^8]: ${ }^{1}$ In general, mathematicians consider polynomials with coefficients of all sorts of number types. For us, they will always be real.

[^9]: ${ }^{2}$ This isn't just a coincidence as it seems to be. Mathematicians actually consider the set of integers and the set of polynomials to have the same underlying algebraic structure.

[^10]: ${ }^{1}$ The name "complex fractions" does not imply they are related to complex numbers. If you want a less confusing name, you could call them "nested fractions."

[^11]: ${ }^{1}$ We also only consider real-valued functions in this class. So, even though we know that $\sqrt{-1}=i$, for instance, we'll treat is as undefined in this section.

[^12]: ${ }^{2}$ This point does fit the definition of inflection we've used, because the curve changes from concave up to concave down here, but there are other ways to define inflection which would technically exclude this point. The distinction doesn't matter in this class, but does in Calculus. Alternatively, this could be called a vertical tangent point.

[^13]: ${ }^{1}$ Remember from Geometry that the tangent to a circle is a straight line which touches the circle at a single point? Graphs of functions also have tangents, which have a very similar meaning.

[^14]: ${ }^{2}$ How this works, and the reasons why performing exponential regression this way is preferable, are beyond the scope of Algebra 2.

[^15]: ${ }^{1}$ Some mathematicians prefer to use parentheses.

[^16]: ${ }^{1}$ Mathematicians usually call this a partial sum, and reserve the word series for an infinite sum.

