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Chapter 1 Functions Algebra 2 Notes

1.1 Sets
A is a collection of mathematical objects. In this class, it will almost always be a collection
of . Sets are usually represented by variables.

Sets can be defined as a list of values, or by using a rule, notated by .

Example 1 If set A contains only the values 1, 2, 3, 6, 8 and 9, then

A = {1, 2, 3, 6, 8, 9}

If set B contains all values greater than or equal to 6, then

B = {x : x ≥ 6}

Note that either : or | can be used in set notation. If reading aloud, say “ ”.

x ∈ S says that the value x the set S, or x is S.
x /∈ S says the opposite: the value x is the set S.

Example 2 Using the definitions of A and B above, write ∈ or /∈.

1 ∈ A 4 /∈ A 6 ∈ A 7 /∈ A 5.9 /∈ A 8.1 /∈ A

1 /∈ B 4 /∈ B 6 ∈ B 7 ∈ B 5.9 /∈ B 8.1 ∈ B

Symbols for Special Sets
Typed Written Name Description

∅ the empty
set The set that contains no elements at all.

N the natural
numbers The set of numbers1used for counting. N = {1, 2, 3, . . .}

Z the integers
The set containing all the natural numbers, their

negative counterparts, and 0.
Z = {. . . ,−2,−1, 0, 1, 2, . . .}

Q the rational
numbers

The set of numbers which can be written as fractions
using integers. Real numbers not in this set (including π)

are called .

R the real
numbers

The set of numbers which can be placed on the
number line.

1Many mathematicians would say the natural numbers also include 0. If you want unambiguous terms, you can
use positive integers to exclude 0, and nonnegative integers include 0.

6 © 2020 Shaun Carter v. 0.3
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Combining Sets

A ∩ B is the of A and B. It is a set that contains all the elements that are in
both A and B.

A ∪B is the of A and B. It is a set that contains all the elements that are in either A
or B.

A\B is the of A and B. It is a set that contains all the elements that are
in A but not in B.

Example 3 C = {1, 5, 7, 10} and D = {4, 5, 6, 7, 8}

C ∩D = {5, 7} C ∪D = {1, 4, 5, 6, 7, 8, 10}

C\D = {1, 10} D\C = {4, 6, 8}

Interval Notation

An is a special type of set which contains all real numbers between a
, a, and an , b.

[a, b] represents an interval with bounds which are . (a, b) represents an interval with
bounds which are . (a, b] and [a, b) can be used when the bound types are mixed.

On number lines and graphs, an included bound is represented by a , and

an excluded bound is represented by an .

Example 4

Interval Set Notation Real Number Line

[−2, 3) {x : −2 ≤ x < 3}
−4 −3 −2 −1 0 1 2 3 4

(1, 6] {x | 1 < x ≤ 6}
0 1 2 3 4 5 6 7 8

(−4, 0) {x | −4 < x < 0}
−5 −4 −3 −2 −1 0 1 2 3

[−2,∞) {x : x ≥ −2}
−4 −3 −2 −1 0 1 2 3 4

(−∞, 7) {x : x < 7}
0 1 2 3 4 5 6 7 8

(−∞,∞) R =
{
x | x is real

}
−4 −3 −2 −1 0 1 2 3 4

© 2020 Shaun Carter v. 0.3 7
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If a set consists of intervals, the symbol can be used to include them
in the same set.

Examples:

Interval Notation Real Number Line

(−3, 1) ∪ [4, 7]
−3 −2 −1 0 1 2 3 4 5 6 7

(−∞,−1] ∪ (3,∞)
−5 −4 −3 −2 −1 0 1 2 3 4 5

[1, 2) ∪ (3, 4] ∪ [6,∞)
0 1 2 3 4 5 6 7 8 9 10

If a set contains all real numbers values, there are multiple options for notating
the set.

Example 5 The set containing all real numbers except 2 and 5 is

Interval Notation Set Notation Set Difference

(−∞, 2) ∪ (2, 5) ∪ (5,∞) {x | x ̸= 2, 5} R\ {2, 5}

Comparing Sets
If every element in a set U is also in another set V , then we can write U ⊂ V . We say that U is a

of V , and that V is a of U . We can also say that V U .

Example 6 Let A = {−1, 2, 3, 4} and B = {−1, 2, 3, 4, 5.5, 7}.

Set Relation T/F Reason
A ⊂ B True Every number in A is also in B .
B ⊂ A False 7 ∈ B , but 7 /∈ A.
A ⊂ N False −1 ∈ A, but −1 is not a natural number.
A ⊂ Z True Every number in A is an integer.
B ⊂ Z False 5.5 ∈ B , but 5.5 is not an integer.

A ⊂ [−1, 4) False 4 ∈ A, but 4 /∈ [−1, 4).
B ⊂ [−1, 7] True Every number in B satisfies −1 ≤ x ≤ 7.

[−1, 4) ⊂ [−1, 7] True If −1 ≤ x < 4, then −1 ≤ x ≤ 7 is also true.
N ⊂ Z ⊂ Q ⊂ R True Follows from definitions of these sets.

8 © 2020 Shaun Carter v. 0.3
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1.2 Introduction to Functions

A is a collection of ordered pairs which represents a relationship between two sets of
real numbers. Each ordered pair is typically labeled as (x, y).

The first set, which contains all x-values, is called the . The second set, which contains
the y-values, is called the .

A is a particular type of relation. In a function, each value in the domain is
related to a value in the codomain. In other words, for each x, there is

y related to it.

To say that a function f relates a domain A and a codomain B, we write

f : A→ B

which can be read aloud as .

The relation between x and y is written as y = f(x)

The (or image) of a function is the of the that contains the

values that are actually produced by the function. We can think of the domain as the

of the function, and the range as the of the function.

Example 1 Find the domain, codomain and range of the function, and find the value of f(x) for
each value x in the domain.

1

2

4

5

2

3

6

7f

domain codomain

domain of f = {1, 2, 4, 5}
codomain of f = {2, 3, 6, 7}
range of f = {2, 6, 7}
f(1) = 2 f(2) = 6 f(4) = 7 f(5) = 6

Example 2 Explain why the following relation is not a function.

3

4

5

6

1

2

3

4

domain codomain

The value 5 in the domain maps to both 3 and 4
in the codomain.
As 5 is not uniquely related, this is not a function.

© 2020 Shaun Carter v. 0.3 9
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One-to-One andMany-to-One Functions
For every function, each x-value in the domain maps to a unique y-value in the range. It is not
necessarily true that each y-value is mapped to by a unique x-value.

domain range

In a , each y-value in the
range is only mapped to by one x-value in the domain.

Equivalently, f(a) = f(b) if and only if a = b.

domain range

In a , at least one y-value
in the range mapped to by more than one x-value in the
domain.

Equivalently, there is an a and b in the domain such that
f(a) = f(b), but a ̸= b.

Function Evaluation

To a function means to determine the value of f(a) for a given value a in the domain.
If a is not in the domain, then f(a) is said to be .

Example 3 The function f is defined by the table shown.

x f(x)

-3 4

-2 3

-1 0

0 1

1 -1

2 5

3 2

The domain of f is {−3,−2,−1, 0, 1, 2, 3}.

The range of f is {−1, 0, 1, 2, 3, 4, 5}.

The relation type of f is oneto one, because each
output has only one input.

f(2) = 5 f(4) is undefined

f(−2) + f(2) = 3 + 5 = 8

2f(−3)− 5f(0) = 2 · 4− 5 · 1 = 8− 5 = 3

f (f (1)) = f (−1) = 0

f (f (f (−2))) = f (f (3)) = f (2) = 5

10 © 2020 Shaun Carter v. 0.3
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Example 4 The function g is defined by the graph shown.

1 2 3 4 5

1

2

3

4

5

x

g(x) The domain of g is {0, 1, 2, 3, 4, 5}.

The range of g is {1, 2, 3, 4, 5}.

The relation type of g is manytoone, because
g(2) = g(5) = 4.

g(3) = 1 g(1.5) is undefined

g (g (g (0))) = g (g (5)) = g (4) = 2

Example 5 The function h is defined by the graph shown.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

h(x) The domain of h is (0, 6].

The range of h is [1, 3) ∪ (3, 6].

The relation type of h is onetoone, because
each output has only one input.

h(4) = 6 h(1.5) = 4.5

h(0) is undefined h(2.5) = 5.25

h (g (1)) = h (3) = 5.5

g (h (1)) = g (4) = 2

Example 6 The function j is defined by the graph shown.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

j(x) The domain of j is [1, 7).

The range of j is [2, 6).

The relation type of j is manytoone, because
j(1) = j(5) = 3.

j(3) = 2 j(7) is undefined

j(2) = 2.25 j(6) = 4.25

© 2020 Shaun Carter v. 0.3 11
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1.3 Inverse Functions and Solving Equations
Suppose we have a , which consists of a collection of ordered pairs in the form (x, y).
Its is the relation whose ordered pairs are switched to be (y, x).

Recall that a is a special type of relation. If the of a
is also a , it is called the .

If a function is denoted , its inverse function, if it exists, is denoted .

Properties of Inverse Functions

If function f has the inverse function f−1, then

• The inverse function of is .

• The of f−1 is identical to the of f .

• The of f−1 is identical to the of f .

• As the inverse function results from switching the x and y

values, the of y = f(x) and y = f−1(x) are

, or of each other
across the line .

f

f−1

domain
of f

range
of f

range
of f−1

domain
of f−1

Condition for Inverse Functions
Suppose function f is defined by the following table, and suppose f−1 is its inverse function.

x 1 2 3

f(x) 7 8 7

What is f−1(8)? f−1(8) = 2 because f(2) = 8.
What is f−1(7)? f−1(7) = 1 or f−1(7) = 3 because f(1) = f(3) = 7.
Because f−1(7) has values, f−1 is . This has happened because

f is a function. Therefore,

Theorem

A function f has an f−1

if and only if f is a function.

12 © 2020 Shaun Carter v. 0.3
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Example 1 The function f is defined by the table shown.

x f(x)

-3 4

-2 3

-1 0

0 1

1 -1

2 2

The domain of f is {−3,−2,−1, 0, 1, 2}.

The range of f is {−1, 0, 1, 2, 3, 4}.

The inverse function f−1 exist
because the function is .

The domain of f−1 is {−1, 0, 1, 2, 3, 4}.

The range of f−1 is {−3,−2,−1, 0, 1, 2}.

x f−1(x)

 1 1
0  1
1 0
2 2
3  2
4  3

Example 2 The function g is defined by the graph shown.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

x

g(x) The domain of g is (0, 7].

The range of g is (1, 8].

The inverse function g−1 exist
because the function is .

The domain of g−1 is (1, 8].

The range of g−1 is (0, 7].

g(1) = 4 g(6) = 5 g(7) = 8

g−1(4) = 1 g−1(5) = 6 g−1(8) = 7

Solving Equations using Inverse Functions

Recall that we can use to solve equations. If an equation contains a

, we can use its in the same way to solve
the equation.

If a solution , this method will ensure that it is . If the equation requires

applying the to a value for which it is , then the equation
has .

© 2020 Shaun Carter v. 0.3 13
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Example 3 Solve the following equations using the table defining f .

x -3 -2 -1 0 1 2 3

f(x) 4 3 0 1 -1 5 2

2f(x+ 3)− 4 = 6

2f(x+ 3) = 6 + 4

= 10

f(x+ 3) = 10
2

= 5

x+ 3 = f−1(5)

= 2

x = 2− 3

= −1

f(5x)− 1

3
= 2

f(5x)− 1 = 2 · 3
= 6

f(5x) = 6 + 1

= 7

5x = f−1(7)

is undefined
∴ no solution

Solving Equations with no Inverse Function

If an equation contains a , it may still be possible to solve the

equation. However, the solution may not be .

Example 4 Solve the following equations using the table defining g.

x -3 -2 -1 0 1 2 3

g(x) 3 2 1 3 2 1 3

3g(x− 5) + 2 = 8

3g(x− 5) = 8− 2

= 6

g(x− 5) =
6

3
= 2

x− 5 = −2 or x− 5 = 1

x = −2 + 5 or x = 1 + 5

x = 3 or x = 6

g(x) + 7

2
= 5

g(x) + 7 = 5 · 2
= 10

g(x) = 10− 7

= 3

x = −3 or x = 0 or x = 3

14 © 2020 Shaun Carter v. 0.3
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1.4 Transformations

A is a which, when applied to a , produces

an of the figure with each point changed in a prescribed way.

In this class we’ll consider transformations of of functions and how they change the

function .

For the following examples, we’ll use the function f , as defined by this graph and table:

−4 −2 2 4

−4

−2

2

4

x

f(x)

x -4 -3 -2 -1 0 1 2 3 4

f(x) -2 -1.5 -1 -1 1 3 2 1 2

Reflections

A is a transformation which creates a across a

. Each point in the image remains the from this

line, but on the .

Example 1
g(x) = f(−x)

x 4 3 2 1 0  1  2  3  4
−x -4 -3 -2 -1 0 1 2 3 4

f(−x)
g(x)

 2  1.5  1  1 1 3 2 1 2

−4 −2 2 4

−4

−2

2

4

f(x)

x

y

Each x-value . Each y-value .

The graph has been .

© 2020 Shaun Carter v. 0.3 15
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Example 2
g(x) = −f(x)

x -4 -3 -2 -1 0 1 2 3 4

f(x)  2  1.5  1  1 1 3 2 1 2
−f(x)
g(x)

2 1.5 1 1  1  3  2  1  2

−4 −2 2 4

−4

−2

2

4

f(x)

x

y

Each x-value . Each y-value .

The graph has been .

Stretches and Compressions

A or is a transformation where each point’s distance from a

is multiplied by a .

If each point gets the fixed line, the transformation is a . If each
point gets the fixed line, the transformation is a .

Example 3
g(x) = f(2x)

x  2  1.5  1  0.5 0 0.5 1 1.5 2
2x -4 -3 -2 -1 0 1 2 3 4

f(2x)

g(x)
 2  1.5  1  1 1 3 2 1 2

−4 −2 2 4

−4

−2

2

4

f(x)

x

y

Each x-value . Each y-value .

The graph has been by a factor of .
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Example 4
g(x) = 3f(x)

x -4 -3 -2 -1 0 1 2 3 4

f(x)  2  1.5  1  1 1 3 2 1 2
3f(x)

g(x)
 6  4.5  3  3 3 9 6 3 6

Each x-value .

Each y-value .

The graph has been by a
factor of .

−4 −2 2 4

−6

−4

−2

2

4

6

8

f(x)

x

y

Translations

A , or , is a transformation where every point in the image is moved
in .

A translation can be , or , or a combination of directions.

Example 5
g(x) = f(x− 2) + 5

x  2  1 0 1 2 3 4 5 6
x− 2 -4 -3 -2 -1 0 1 2 3 4

f(x− 2)  2  1.5  1  1 1 3 2 1 2
f(x− 2) + 5

g(x)
3 3.5 4 4 6 8 7 6 7

Each x-value .

Each y-value .

The graph has been and

.

−4 −2 2 4 6

−2

2

4

6

8

f(x)

x

y

© 2020 Shaun Carter v. 0.3 17
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Combining Transformations

Example 6 g(x) = 2f [− (x+ 3)] + 2

x 1 0  1  2  3  4  5  6  7
x+ 3 4 3 2 1 0  1  2  3  4
− (x+ 3) -4 -3 -2 -1 0 1 2 3 4

f [− (x+ 3)]  2  1.5  1  1 1 3 2 1 2
2f [− (x+ 3)]  4  3  2  2 2 6 4 2 4

2f [− (x+ 3)] + 2

g(x)
 2  1 0 0 4 8 6 4 6

The graph has been:

• across the ,

• from the
by a factor of ,

• by units, and

• by units. −6 −4 −2 2 4

−2

2

4

6

8

f(x)

x

y

When listing transformations for the usual form g(x) = A · f [n(x− h)] + k, translations should
always be listed reflections and dilations.

Summary of Transformations

y = A · f(x)

reflect across the x-axis if

stretch from the x-axis by a factor of |A| if

compress toward the x-axis by a factor of 1

|A|
if

y = f(n · x)

reflect across the y-axis if

stretch from the y-axis by a factor of 1

|n|
if

compress toward the y-axis by a factor of |n| if

y = f(x− h) + k
translate |h| units right if , left if
translate |k| units up if , down if

18 © 2020 Shaun Carter v. 0.3
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2.1 Linear Functions

A is a function with the algebraic form

f(x) = mx+ b

where m and b are constants.

This corresponds to the of a linear relation, named because the

graph of the function is a , where m is the of the line and b is its

.

If a function is defined by an , the function is evaluated by

the appropriate value from the into the rule, and calculating the result.

Example 1 f : [−3, 6)→ R, where f(x) = −2x+ 8.

f(2) = −2(2) + 8

= 4

f(5) = −2(5) + 8

= −2
f(−3) = −2(−3) + 8

= 14

f(7) is undefined
∵ 7 /∈ [−3, 6)

f(−1.25) = −2(−1.25) + 8

= 2.5 + 8

= 10.5

Graphing Functions

A useful tool to a function is its .
The graph consists of a 1 drawn on a

, or 2.

If x is in the of the function f , then the
(x, f(x)) will be part of the curve.

Example 2 Plot the function f from Example 1 on the
coordinate plane to the right. −10 −5 5 10

−5

5

10

15

x

y

1Even if it’s a straight line, it’s still called a “curve”.
2Named after the 17th Century French philosopher, René Descartes.
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Implied Domains
It is common practice to state only the rule of a function, without stating the domain. In these
cases, it is reasonable to assume the , which is the

domain for which the function can be .

For a , the implied domain is , because

mx+ b can be evaluated for any x ∈ R.

Sketching Linear Functions

A is a version of a graph that shows only the . In the case of
a linear function, the information that should be included is:

shape of curve straight line with an appropriate slope
x-intercept y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0)

endpoints evaluate the function at the bounds of the domain

Example 3 Sketch f(x) = 4x+ 6.
Shape: Straight line with slope m = 4
x-intercept:

(
−3

2 , 0
)

4x+ 6 = 0

4x = −6
x = −3

2
y-intercept: (0, 6), as f(0) = 6
endpoints: none, as domain is R

x

y

Example 4 Sketch g(x) = −1
2x+ 1 on the domain [2,∞).

Shape: Straight line with slope m = −1
2

x-intercept: (2, 0)
−1

2x+ 1 = 0

−1
2x = −1
x = 2

y-intercept: none, as f(0) is undefined
endpoints: (2, 0)
g(2) = 0

x

y

Note that it is a good idea to include at least two points so the slope of the line is clear.
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Example 5 Find the range of h : (−1, 5]→ R where h(x) = −2x−3, and sketch the graph of h(x).

Shape: Straight line with slope m = −2
x-intercept: none, as x = −3

2 /∈ (−1, 5]
−2x− 3 = 0

−2x = 3

x = −3
2

y-intercept: (0,−3), as h(0) = −3
endpoints: (−1,−1) and (−5,−13)
x = −1 : −2(−1)− 3 = 2− 3 = −1
x = 5 : h(5) = −2(5)−3 = −10−3 = −13
The range of h is [−13,−1)

x

y

The Linear Parent Function

For any given function, its is the simplest function of the same type.

parent function

f(x) = x

domain

R

range

R

relation type

onetoone
x-intercept

(0, 0)

y-intercept

(0, 0)

slope

1

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Transformations of Linear Functions

Recall that g(x) = Af(x) + k represents a or from the x-axis if

|A| ̸= 1, a across the x-axis if A is negative, and a up or down.

If we let A = m, k = b, and f(x) = x, then g(x) = mx + b, the general form of linear functions.
This gives us the following result:

Theorem

Every , g(x) = mx+ b, is the result of a
applied to its , f(x) = x.

Example 6 Write the transformations needed to obtain
g(x) = −2x+ 5 from its parent function.

• Reflect across the xaxis.

• Stretch from the xaxis by a factor of 2.

• Shift 5 units up.

−10 10

−10

10

y = x

x

y

Example 7 The graph of y = x is compressed by a factor of 4 toward the x-axis, shifted 8 units
left and shifted 7 units down. What is resulting function in slope-intercept form?

A = 1
4 , h = −8, k = −7

f(x) = 1
4(x+ 8)− 7

= 1
4x+ 2− 7

= 1
4x− 5
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Transformations do not need to be applied only to the parent function, but can be used with any
function.

Example 8 The function f : [−2, 5) → R, where f(x) = 2x+ 4, is reflected across the x-axis and
shifted 3 units right. Find the resulting function g in the form g(x) = mx+ b.

Find the new domain:

Reflecting across the xaxis does not
affect the x values.
Shifting 3 units right means each x
value is increased by 3.
So, g : [1, 8)→ R.

Find the new rule:
g(x) = −f(x− 3)

= − [2 (x− 3) + 4]

= −(2x− 6 + 4)

= −(2x− 2)

= −2x+ 2

Example 9 Find the transformations required to transform f(x) = 3x+ 2 to g(x) = −6x+ 5.

g(x) = −6x+ 5

= −2(3x) + 5

= −2(3x+ 2− 2) + 5

= −2(3x+ 2) + 4 + 5

= −2f(x) + 9

A = −2, k = 9

• Reflect across the xaxis.
• Stretch from the xaxis by a

factor of 2.
• Shift 9 units up.
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2.2 Inverses of Linear Functions

Recall that a function has an if and only if it is a
.

Since non-constant functions are (think about why this is true) we
can conclude the following:

Theorem

Each , f(x) = mx+ b, where ,

has an .

Finding the Inverse Function

Recall that the of a relation results from . For an
algebraically defined function, we can find the inverse by following these steps:

1. Replace f(x) with .

2. Rewrite the equation by .

3. Rearrange the equation so that .

4. Check that y is a ; if so, replace y with .

Example 1 Find the inverse function of f(x) = 2x− 7.

y = 2x− 7

x = 2y − 7 swap x↔ y

2y = x+ 7

y = 1
2x+ 7

2

f−1(x) = 1
2x+ 7

2

−10 10

−10

10

f(x)

x

y
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Example 2 Find the inverse of g : (−∞, 0)→ R, where g(x) = −1
2x− 3.

y = −1
2x− 3

x = −1
2y − 3 swap x↔ y

−1
2y = x+ 3

y = −2x− 6

g−1(x) = −2x− 6

We also need to find the domain of g−1, which is
the same as the range of g:

x < 0

−1
2y > 0

−1
2y − 3 > −3
g(x) > −3

domain of g−1 = range of g = (−3,∞)

∴ g−1 : (−3,∞)→ R, where g−1(x) = −2x−6

−10 10

−10

10

g(x)

x

y

Example 3 Find the inverse of h : [−1, 2]→ R, where h(x) = 3x+ 4.

y = 3x+ 4

x = 3y + 4 swap x↔ y

3y = x− 4

y = 1
3x−

4
3

h−1(x) = 1
3x−

4
3

In the domain of h,

−1 ≤ x ≤ 2

−3 ≤ 3x ≤ 6

1 ≤ 3x+ 4 ≤ 10

1 ≤ h(x) ≤ 10

domain of h−1 = range of h = [1, 10]

∴ h−1 : [1, 10]→ R, where h−1(x) = 1
3x−

4
3

−10 10

−10

10
h(x)

x

y
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2.3 Systems of Linear Equations
A is a collection of multiple containing multiple

, or variables. A to the system consists of values for the unknowns
that satisfy all of the equations .

Example 1 Verify that x = 2, y = 5, z = −3 is a solution to
x+ y + z = 4

2x− y − z = 2

x+ 3y + 2z = 11

x+ y + z

= 2 + 5 + (−3)
= 4

2x− y − z

= 2(2)− 5− (−3)
= 4− 5 + 3

= 2

x+ 3y + 2z

= 2 + 3(5) + 2(−3)
= 2 + 15− 6

= 11

Solving Systems of Two Equations Using Substitution

1. Choose one equation, and it to one unknown.

2. this equation into the other and for the remaining unknown.

3. this solution into the first rearranged equation to find the first unknown.

4. State the final solution for unknowns, by stating each value separately or together
as an ordered pair.

Example 2
{

x+ 2y = 10 (1)

2x− 3y = 6 (2)

Rearrange (1): x = 10− 2y (3)
Sub into (2): 2(10− 2y)− 3y = 6

20− 4y − 3y = 6

−7y = −14
y = 2

Sub into (3): x = 10− 2(2) = 6

Solution: x = 6, y = 2
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Example 3
{
2x− 3y = −11 (1)

3x− y = 8 (2)

Rearrange (2): y = 3x− 8 (3)
Sub into (1): 2x− 3(3x− 8) = −11

2x− 9x+ 24 = −11
−7x = −35

x = 5

Sub into (3): y = 3(5)− 8 = 7

Solution: x = 5, y = 7

Solving Systems of Two Equations Using Elimination

1. Choose one unknown you want to have . Make this true by

the equations by appropriate values.

2. this unknown by the equations.

3. for the remaining unknown.

4. this solution into one of the original equations to find the first unknown.

5. State the final solution for unknowns.

Example 4
{

4x+ 5y = −5 (1)

−2x− y = 7 (2)

Multiply (2) by 5:{
4x + 5y = −5 (3)

−10x− 5y = 35 (4)

Add (3) and (4):

−6x = 30

x = −5

Sub into (2):

−2(−5)− y = 7

10− y = 7

y = 3

Solution:

x = −5, y = 3
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Example 5
{
3x+ 4y = 2 (1)

2x− 5y = 9 (2)

Multiply (1) by 2 and (2) by −3:{
6x+ 8y = 4 (3)

−6x+ 15y = −27 (4)

Add (3) and (4):

23y = −23
y = −1

Sub into (1):

3x+ 4(−1) = 2

3x− 4 = 2

3x = 6

x = 2

Solution:

x = 2, y = −1

Solving Systems of Two Equations Using Graphs

Recall that when an equation is graphed, each on the curve represents an

that the equation.

Suppose both equations of a system are graphed on the . Any points of

will represent ordered pairs which satisfy equations. This is exactly
what we’re looking for as a to the system.

Example 6{
y = x− 4 (1)

x+ y = 2 (2)

(2) =⇒ y = −x+ 2

Solution at x = 3, y = −1
−6 6

−6

6

x

y
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Example 7{
x− 2y = 6 (1)

y = 4x+ 4 (2)

(1) =⇒ y = 1
2x− 3

Solution at x = −2, y = −4
−6 6

−6

6

x

y

Types of Solutions to Systems of Linear Equations

Each of the earlier example systems have . This is not always the case.

Linear systems may instead have , or have .

Example 8 Algebraically find the nature of the solution to this system. Represent it with a graph.

{
2x− y = 4 (1)

6x− 3y = 12 (2)

Multiply (1) by −3:{
−6x + 3y = −12 (3)

6x− 3y = 12 (4)

Add (3) and (4): 0 = 0

=⇒ infinitely many solutions

−6 6

−6

6

x

y

These equations are , because they at the same time.

The graphical representation has because the lines are

.
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Example 9 Algebraically find the nature of the solution to this system. Represent it with a graph.

{
x+ 2y = −2 (1)

2x+ 4y = 8 (2)

Multiply (1) by −2:{
−2x− 4y = 4 (3)

2x + 4y = 8 (4)

Add (3) and (4): 0 = 12

=⇒ no solution

−6 6

−6

6

x

y

These equations are , because they at the same time.
The graphical representation has because the lines are .

Systems of Three Linear Equations

For a system of with , we can use the same
techniques to find a solution.

1. Use or to remove one unknown from the system.

2. Solve for the remaining two unknowns.

3. Use the partial solution to solve for the removed unknown. State the complete solution.

Example 10 Using substitution:
x+ y + z = 6 (1)

2x− y + 3z = 11 (2)

−x+ 3y + 4z = 8 (3)

Rearrange (1): x = −y − z + 6 (4)
Sub (4) into (2):

2(−y − z + 6)− y + 3z = 11

−2y − 2z + 12− y + 3z = 11

z = 3y − 1 (5)
Sub (4) into (3):
−(−y − z + 6) + 3y + 4z = 8

y + z − 6 + 3y + 4z = 8

4y + 5z = 14 (6)
Sub (5) into (6):

4y + 5(3y − 1) = 14

4y + 15y − 5 = 14

19y = 19

y = 1

Sub into (5): z = 3(1)− 1 = 2

Sub into (4): x = −1− 2 + 6 = 3

x = 3, y = 1, z = 2
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Example 11 Using elimination:


x+ y + z = 6 (1)

2x− y + 3z = 11 (2)

−x+ 3y + 4z = 8 (3)

Add (1) + (2):

3x+ 4z = 17 (4)

Add 3(2) + (3):

5x+ 13z = 41 (5)

Multiply (4) by 5 and (5) by −3:{
15x + 20z = 85 (6)

−15x− 39z = −123 (7)

Add (6) + (7):
−19z = −38

z = 2

Sub into (4):
3x+ 4(2) = 17

3x+ 8 = 17

3x = 9

x = 3

Sub into (1):
3 + y + 2 = 6

y = 1

x = 3, y = 1, z = 2
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2.4 Linear Regression

Functions are often used for real-world situations. Typically, the value of an

is used as an input for the function, whose output is used to predict

the value of a .

Scatter Plots

A is a plot used to visualize the relationship between two-variables, where each

data point is treated as an and plotted as a on a plane.

Visually inspecting a scatter plot can help decide whether a is an appropriate
model for a given set of data.

The independent variable is placed on the , and the dependent variable is
placed on the .

Example 1 A voltage source is placed in an electronic circuit.
For various voltages, the current in the circuit is measured. The
following results are recorded:

V (V) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

I (mA) 0.5 5.8 8.7 14.5 18.3 21.2 24.8 30.7

Note that voltage, V , is measured in volts, V, and current, I, is
measured in milliampere, mA.

5 10

20

40

V (V)

I(mA)

Regression

The process of a function to a set of in order to the

association between variables is called . When the modeling function is linear,

it is called .

Since a linear function has the form , linear regression means choosing
values for and in order to fit the data as well as possible.3 We will be using

to find these values for us.

3You may think “as well as possible” is very vague. If so, you’re right! The details of what this means are not
important for Algebra 2, but they will be very important if you take a Statistics class in the future.
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Example 2 For the electronic circuit example,

m = 4.13929, b = −3.06429

I ≈ 4.139V − 3.064

5 10

20

40

V (V)

I(mA)

The Correlation Coefficient

The , denoted by , is a quantity that measures the

and of the linear association between two variables. r is in the interval .

Example 3 For the electronic circuit example, r = 0.9969, which indicates a very strong,
positive, linear relationship between voltage and current.

The Coefficient of Determination

The , denoted by is a measure of how well a regression
line, or curve, fits the provided data.4 For (but not other types of

regression) it is the of the correlation coefficient, so . Its value is in the
interval .

Example 4 For the electronic circuit example, R2 = 0.9937, which indicates the regression
model fits the data very well.

4A statistics class would teach you that R2 is the proportion of the variation in the dependent variable which is
explained by the model. Don’t worry if that doesn’t make any sense yet!
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Making Predictions
There are two types of predictions that we can make using a regression model.

means predicting values the values in the data. If the model is
a good fit for the data, then this can produce very reliable predictions.

Example 5 Estimate the current in the circuit when V = 2.6 V.

I ≈ 4.139(2.6)− 3.064

= 7.7 mA

Example 6 Estimate the voltage that corresponds to a current of I = 27.3 mA.

27.3 ≈ 4.139V − 3.064

4.139V ≈ 27.3 + 3.064 = 30.364

V ≈ 30.364

4.139
= 7.3 V

means predicting values the values in the data. You need to be

careful when , because it is very difficult to know how far the trend in the data
continues outside of its range.

Example 7 Estimate the current in the circuit when V = 0.3 V.

I ≈ 4.139(0.3)− 3.064

= −1.8 mA

Note that this prediction is unreliable.

For anyone who cares about the physics, the hypothetical circuit in this section is
a silicon diode attached to a 250 Ω resistor in series. Not only is the negative
current in the last example an unreliable result, it doesn't even make sense given
the scenario.
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2.5 Piecewise Linear Functions
A is a function which is defined by , each applying

to different parts of the .

Example 1 Evaluate each of the following using the function f .

f(x) =


2x −2 ≤ x ≤ 3

4 3 < x < 6

−x+ 9 x ≥ 6

f(1) = 2(1)

= 2

f(5) = 4 f(8) = −8 + 9

= 1

f(6) = −6 + 9

= 3

f(3) = 2(3)

= 6

f(−3) is undefined

A piecewise function can be by considering each rule separately, and plotting each

on its own .

The of the entire piecewise function is the of the domains of the separate
rules. Similarly, the is the of the produced by each rule.

Example 2 For function f above, plot its graph and find its domain and range.

−5 5 10 15

−5

5

x

y Domain:

[−2, 3] ∪ (3, 6) ∪ [6,∞)

= [−2,∞)

Range:

[−4, 6] ∪ {4} ∪ (−∞, 3]

= (−∞, 6]
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Example 3 Define h as a piecewise function.

For x ∈ (0, 2], y = x+ 3

For x ∈ (2, 4], y = 1
2(x− 2) + 5 = 1

2x+ 4

For x ∈ (4, 6], y = −(x− 4) + 3 = −x+ 7

h(x) =


x+ 3 0 < x ≤ 2
1
2x+ 4 2 < x ≤ 4

−x+ 7 4 < x ≤ 6 1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

h(x)

The Absolute Value Parent Function

An important piecewise function is the .

parent function

f(x) = |x|

domain

R

range

[0,∞)

relation type

manytoone
x-intercept

(0, 0)

y-intercept

(0, 0)

vertex

(0, 0)

slopes

±1

|x| =

{
x x ≥ 0

−x x < 0

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Absolute Value Functions

By applying to the parent function, we get the of the
absolute value function:

f(x) = A |x− h|+ k

• Graph is or opens if A is .

Graph is or opens if A is .

• Graph has two intervals, whose slopes are .

• Graph has a at .

A sketch of an absolute value function should include:

shape of curve "V" shape with enough points to show slopes
vertex (h, k), using translation of parent function to identify

x-intercepts y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0)

endpoints evaluate the function at the bounds of the domain

Example 4 Sketch g(x) = −2 |x+ 3|+ 4.

Orientation: Inverted
Slopes: m = ±2
Vertex: (−3, 4)

x-intercepts: (−5, 0) and (−1, 0)
−2 |x+ 3|+ 4 = 0

−2 |x+ 3| = −4
|x+ 3| = 2

x+ 3 = −2 or x+ 3 = 2

x = −5 or x = −1

y-intercept: (0,−2)
as f(0) = −2 |3|+ 4 = −2

endpoints: none, as domain is R

x

y
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Example 5 Find the function f represented by the following graph.

63

−9

x

y Orientation: Upright
Slopes: m = ±3
=⇒ A = +3

Vertex: (3,−9)

=⇒ h = 3, k = −9

f(x) = 3 |x− 3| − 9

Example 6 Find the range of f : [2, 9)→ R, where f(x) = 1
2 |x− 4|+ 3.

The bounds of the range will occur at the endpoints or at the vertex.
At the vertex: f(4) = 3

Left endpoint: f(2) = 1
2 |2− 4|+ 3 = 1

2 · 2 + 3 = 4

Right endpoint: f(9) is undefined, 1
2 |9− 4|+ 3 = 1

2 · 5 + 3 = 11
2

Range is
[
3, 112

)

Example 7 Find the transformations required to transform f(x) = 2 |x− 2|+ 1 to
g(x) = −3 |x+ 1|+ 6.

g(x) = −3 |x+ 1|+ 6

= −3
2 · 2 |(x+ 3)− 2|+ 1 + 5

= −3
2f(x+ 3) + 5

• Reflect across the xaxis
• Stretch from the xaxis by a

factor of 3
2

• Shift 3 units left
• Shift 5 units up
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Example 8 Express f(x) = 5 |x− 4|+ 7 as a piecewise function.

When x− 4 ≥ 0:

f(x) = 5(x− 4) + 7

= 5x− 20 + 7

= 5x− 13

When x− 4 < 0:

f(x) = 5(−x+ 4) + 7

= −5x+ 20 + 7

= −5x+ 27

f(x) =

{
5x− 13 x ≥ 4

−5x+ 27 x < 4
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3.1 Quadratics in Vertex Form
A is an expression which can be written in the form (with a ̸= 0):

ax2 + bx+ c

A is a function consisting of a quadratic expression. The three forms
of these functions we usually consider are

standard form f(x) = ax2 + bx+ c

vertex form f(x) = A(x− h)2 + k

factored form f(x) = a(x+ p)(x+ q)

The Quadratic Parent Function

parent function

f(x) = x2

domain

R

range

[0,∞)

relation type

manytoone
x-intercept

(0, 0)

y-intercept

(0, 0)

vertex

(0, 0)

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Algebra 2 Notes 3.1 Quadratics in Vertex Form

Solving Quadratic Equations Using Square Roots

A is any equation which can be written with a

on one side and on the other. Note that this might not be the original
form of the equation.

If an equation is written in , it can be solved using :

1. Rearrange the equation to the quantity which is .

2. Eliminate the square with a . Consider both the and
square roots.

3. Finish solving the equation by x.

Example 1 Solve 2(x− 4)2 − 5 = 13

2(x− 4)2 − 5 = 13

2(x− 4)2 = 18

(x− 4)2 = 9

x− 4 = ±
√
9 = ±3

x = 4± 3

x = 1 or x = 7

Example 2 Solve −3(x+ 5)2 + 7 = 7

−3(x+ 5)2 + 7 = 7

−3(x+ 5)2 = 0

(x+ 5)2 = 0

x+ 5 = 0

x = −5

Example 3 Solve (x+ 2)2 − 7 = 0

(x+ 2)2 − 7 = 0

(x+ 2)2 = 7

(x+ 2)2 = ±
√
7

x = −2±
√
7

Example 4 Solve 2(x− 6)2 + 9 = 1

2(x− 6)2 + 9 = 1

2(x− 6)2 = −8
(x− 6)2 = −4

=⇒ no real solution

Note that quadratic equations may have , , or real1 solutions.

1In an upcoming lesson, you will see that it is possible to get solutions that are not real numbers! For now, we’re
only considering the real numbers.
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Graphing Quadratic Functions Using Vertex Form

By applying to the quadratic parent function, we get the
of a quadratic function:

f(x) = A(x− h)2 + k

• Graph is or opens if A is .

Graph is or opens if A is .

• corresponds to a or from the x-axis.

• Graph has a at .

A sketch of a quadratic function should include:

shape of curve parabola with enough points to show stretch/compression
vertex (h, k), using translation of parent function to identify

x-intercepts y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0)

endpoints evaluate the function at the bounds of the domain

Example 5 Sketch f(x) = (x− 3)2 − 4.

Orientation: Upright
Vertex: (3,−4)

x-intercepts: (−5, 0) and (−1, 0)
(x− 3)2 − 4 = 0

(x− 3)2 = 4

x− 3 = ±
√
4 = ±2

x = 3± 2

x = 1 or x = 5

y-intercept: (0, 5)
as f(0) = (−3)2 − 4 = 5

endpoints: none, as domain is R

x

y
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Example 6 Find the function g represented by the following graph.

4

21
4

9

61
4

x

y Vertex: (4, 254 ) =⇒ h = 4, k = 25
4

g(x) = A(x− 4)2 + 25
4

y-intercept: (0, 94)

g(0) = 16A+ 25
4 = 9

4

16A = −4 =⇒ A = −1
4

Domain: [0, 9)

g : [0, 9)→ R, where
g(x) = −1

4(x− 4)2 + 25
4

Example 7 Find the range of h : [−3, 1]→ R, where h(x) = −2(x+ 2)2 + 7.

The bounds of the range will occur at the endpoints or at the vertex.
At the vertex: f(−2) = 7

Left endpoint: f(−3) = −2(−3 + 2)2 + 7 = −2 · 1 + 7 = 5

Right endpoint: f(1) = −2(1 + 2)2 + 7 = −2 · 9 + 7 = −11
Range is [−11, 7]

Zeros, Roots, Solutions and x-Intercepts
These terms are related, but have subtly different meanings.

The of an expression are the values which cause the expression to equal .

The of an equation are the values which cause the equation to be .

The of a function are the input values which cause the output value to be .

The of a graph are the points where the curve .

Example 8 (Working in Example 5.)

The of (x− 3)2 − 4 = 0 are 1 and 5.
The of f(x) = (x− 3)2 − 4 are 1 and 5.
The of (x− 3)2 − 4 are 1 and 5.
The of the graph of y = (x− 3)2 − 4 are (1, 0) and (5, 0).
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3.2 Quadratics in Factored Form
The Zero Product Property

If , then or or .

Equivalently, if the of a set of is , then at least one of the

is .

Quadratic Equations in Factored Form
Example 1 Solve 3x(x− 5) = 0

3x(x− 5) = 0

3x = 0 or x− 5 = 0

x = 0 or x = 5

Example 2 Solve (x− 4)(x+ 7) = 0

(x− 4)(x+ 7) = 0

x− 4 = 0 or x+ 7 = 0

x = 4 or x = −7

Example 3 Solve (5x− 2)(7x+ 4) = 0

(5x− 2)(7x+ 4) = 0

5x− 2 = 0 or 7x+ 4 = 0

5x = 2 or 7x = −4
x = 2

5 or x = −4
7

Example 4 Solve (3x− 8)2 = 0

(3x− 8)(3x− 8) = 0

3x− 8 = 0

3x = 8

x = 8
3

Graphing Quadratic Functions in Factored Form

We can use the zero product property as above to find
the of the graph.

To find the , we can use the symmetry of
the parabola. The passes

through the , as well as exactly halfway
between the .

h is the of the zeros of the function, and
k is the value of the function evaluated at h.

x
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Example 5 Sketch a graph of f(x) = (x− 2)(x− 10).

x-intercepts: (2, 0) and (10, 0)

f(x) = 0 =⇒ x = 2 or x = 10

y-intercept: (0, 20)

f(0) = (−2)(−10) = 20

vertex: (6,−16)

h =
2 + 10

2
= 6

k = f(h) = (6− 2)(6− 10) = −16

endpoints: none, as domain is R

x

y

Example 6 Find the function g represented by the following graph.

−7 −3
2

−21
2

61
4

x

y x-intercepts: (−7, 0) and (−3, 0)

g(x) = a(x+ 7)(x+ 3)

y-intercept:
(
0,−21

2

)
g(0) = a(7)(3) = 21a = −21

2

a = −1
2

g(x) = −1
2
(x+ 7)(x+ 3)

Example 7 Write f(x) = (1− x)(x+ 6) in vertex form.

Zeros of f : (1− x)(x+ 6) = 0
=⇒ x = 1 or x = −6

h =
1 + (−6)

2
= −5

2

k = f(h) =
(
1 + 5

2

) (
−5

2 + 6
)

= 7
2 ·

7
2 =

49
4

f(x) = A
(
x+ 5

2

)2
+ 49

4

f(1) = 0 =⇒ A
(
1 + 5

2

)2
+ 49

4 = 0

49
4 A+ 49

4 = 0
49
4 A = −49

4

A = −1

f(x) = −
(
x+ 5

2

)2
+ 49

4
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3.3 Review of Distributing and Factoring

The is one of the most important rules in algebra. Many of our
results going forward are derived from it.

The Distributive Property

a(b + c) = ab + ac

Example 1 Verify 8(7 + 5) = 8 · 7 + 8 · 5

8(7 + 5) = 8 · 12
= 96

8 · 7 + 8 · 5 = 56 + 40

= 96

Example 2 Verify 3(20− 6) = 3 · 20− 3 · 6

3(20− 6) = 3 · 14
= 42

3 · 20− 3 · 6 = 60− 18

= 42

The process of changing a(b + c) to ab + ac is called
.

The reverse process is called .

The can be used to the
distributive property.

Distributing

To algebraically, multiply each inside the parentheses by the
outside the parentheses.

Example 3 Distribute 3x(2x− 4)

3x(2x− 4) = 6x2 − 12x

Example 4 Distribute −4y(7y2 + 5)

−4y(7y2 + 5) = −28y3 − 20y
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Example 5 Distribute 3x2(x4 − 2x3 + 5x− 1)

3x2(x4 − 2x3 + 5x− 1) = 3x6 − 6x5 + 15x3 − 3x2

If there are sets of parentheses, we need to over both.

in the first set of parentheses is multiplied by in the second set of parentheses.

After distributing, make sure you .

Example 6 Distribute (x+ 4)(x− 7)

(x+ 4)(x− 7) = x2 − 3x− 28

Example 7 Distribute (2x+ 3)(x+ 6)

(2x+ 3)(x+ 6) = 2x2 + 15x+ 18

Example 8 Distribute (3x− 5)(x3 + 2x2 − 7)

(3x− 5)(x3 + 2x2 − 7) = 3x4 + x3 − 10x2 − 21x+ 35
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Factoring Using the Greatest Common Factor

If all the in an expression have a which is the same, that is
called a .

The , or , is the largest possible
for the expression.

To factor, we can every term by the , and write the result in ,

with the written in front. As the expression has been both and

by the , the result is equivalent.

This method of is the simplest and should be attempted . If this is done

correctly, there will be no remaining.

Example 9 Factor 9m3 − 12m2

9m3 − 12m2 = 3m2(3m− 4)

Example 10 Factor 12a3b+ 24a2b5 − 42a4b4

12a3b+ 24a2b5 − 42a4b4 = 6a2b(2a+ 4b4 − 7a2b3)
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Quadratics with Common Factors

We’ve already seen that can be convenient for finding the zeros of a function.
In certain circumstances, can change a quadratic expression/function

in into .

Example 11 Solve 15x2 + 10x = 0

15x2 + 10x = 0

5x(3x+ 2) = 0

5x = 0 or 3x+ 2 = 0

x = 0 or 3x = −2
x = 0 or x = −2

3

Example 12 Solve 2x2 = 8x

2x2 = 8x

2x2 − 8x = 0

2x(x− 4) = 0

2x = 0 or x− 4 = 0

x = 0 or x = 4

Example 13 Sketch a graph of f(x) = −3x2 − 15x.

factor: f(x) = −3x(x+ 5)

x-intercepts: (0, 0) and (−5, 0)

f(x) = 0 =⇒ x = 0 or x = −5

y-intercept: (0, 0)

f(0) = −3(0)2 − 15(0) = 0

vertex: (−2.5, 18.75)

h =
0 + (−5)

2
= −2.5

k = f(h)

= −3(−2.5)2 − 15(−2.5)
= 18.75

endpoints: none, as domain is R

x

y
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3.4 Special Quadratics
In the previous section, we factored select quadratics in standard form using the greatest common
factor. The following rules will allow us to factor other special cases.

Theorem: Perfect Squares

a2 + 2ab + b2 = (a + b)2

a2 − 2ab + b2 = (a− b)2

Proof

(a+ b)2 = (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= a2 + ab+ ab+ b2

= a2 + 2ab+ b2

Replace b with −b to obtain the second result. �

Theorem: Differences of Squares

a2 − b2 = (a + b)(a− b)

Proof

(a+ b)(a− b) = a(a− b) + b(a− b)

= a2 − ab+ ab− b2

= a2 − b2

�
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These rules can be used for :

Example 1 Distribute (x+ 10)2

Using a = x and b = 10,

(x+ 10)2 = x2 + 20x+ 100

Example 2 Distribute (2x+ 7)(2x− 7)

Using a = 2x and b = 7,

(2x+ 7)(2x− 7) = 4x2 − 49

The rules can also be used for :

Example 3 Factor x2 − 81

Using a = x and b = 9,

x2 − 81 = (x+ 9)(x− 9)

Example 4 Factor 25x2 − 30x+ 9

Using a = 5x and b = 3,

25x2 − 30x+ 9 = (5x− 3)2

It is always a good idea to attempt to before factoring with any
other method, including special quadratics:

Example 5 Factor 5x2 + 20x+ 20

5x2 + 20x+ 20 = 5(x2 + 4x+ 4)

= 5(x+ 2)2

Example 6 Factor 63x2 − 175

63x2 − 175 = 7(9x2 − 25)

= 7(3x+ 5)(3x− 5)

As with all quadratic equations, equations in these forms can be solved using the
if they are :

Example 7 Solve 4x2 + 196 = 56x

4x2 − 56x+ 196 = 0

4(x2 − 14x+ 49) = 0

x2 − 14x+ 49 = 0

(x− 7)2 = 0

x = 7

Example 8 Solve 12x2 − 75 = 0

3(4x2 − 25) = 0

4x2 − 25 = 0

(2x+ 5)(2x− 5) = 0

2x = ±5
x = ±5

2
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Perfect Squares and Differences of Squares as Functions

Note that the and rules are useful for
converting these types of quadratic functions between their three forms:

perfect square difference of squares

standard form f(x) = x2 + 2mx+m2 g(x) = x2 − n2

vertex form f(x) = (x+m)2 g(x) = x2 − n2

factored form f(x) = (x+m)2 g(x) = (x+ n)(x− n)

Example 9 Sketch a graph of f(x) = −2x2+12x−18.

factor: f(x) = −2(x2−6x+9) = −2(x−3)2

x-intercepts: (3, 0)

f(x) = 0 =⇒ x = 3

y-intercept: (0,−18)

f(0) = −18

vertex: (3, 0)

h = 3, k = 0

endpoints: none, as domain is R

x
y

Example 10 Sketch a graph of f(x) = 3x2 − 12.

factor: f(x) = 3(x2 − 4) = 3(x+ 2)(x− 2)

x-intercepts: (−2, 0) and (2, 0)

f(x) = 0 =⇒ x = ±2

y-intercept: (0,−12)

f(0) = −12

vertex: (0,−12)
h = 0, k = −12

endpoints: none, as domain is R

x

y
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Example 11 Write g(x) = (x− 5)2 − 9 in factored form.

This is a difference of squares with a = x− 5 and b = 3.

g(x) = (x− 5)2 − 32

= (x− 5 + 3)(x− 5− 3)

= (x− 2)(x− 8)

Example 12 Write h(x) = (x+ 7)2 − 12 in factored form.

This is a difference of squares with a = x+ 7 and b =
√
12 = 2

√
3.

h(x) = (x+ 7)2 −
(
2
√
3
)2

=
(
x+ 7 + 2

√
3
)(

x+ 7− 2
√
3
)

Further Factoring Examples

While perfect squares and differences of squares are examples of expressions, they

can also be used to factor certain other 2.

Example 13 Factor 8x4 − 18x2

8x4 − 18x2 = 2x2(4x2 − 9)

= 2x2(2x+ 3)(2x− 3)

Example 14 Solve 5x3 + 60x2 + 180x = 0

5x3 + 60x2 + 180x = 0

5x(x2 + 12x+ 36) = 0

5x(x+ 6)2 = 0

x = 0 or x = −6

Example 15 Factor x4 − 18x2 + 81

Let u = x2

x4 − 18x2 + 81 = u2 − 18u+ 81

= (u− 9)2

= (x2 − 9)2

= [(x+ 3) (x− 3)]2

= (x+ 3)2(x− 3)2

2We’ll discuss polynomials in detail in a later chapter.
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3.5 Factoring Quadratics in Standard Form
Recall that the of a quadratic expression is

ax2 + bx + c

FactoringMonic Quadratics

A quadratic expression is called if .

Theorem

If a monic quadratic expression x2 + bx+ c has values p and q such that

b = p+ q and c = p · q

then
x2 + bx + c = (x + p)(x + q)

Proof

x2 + bx+ c = x2 + (p+ q)x+ pq

= x2 + px+ qx+ pq

= x(x+ p) + q(x+ p)

= (x+ p)(x+ q) �

Example 1 Factor x2 + 7x+ 12

x2 + 7x+ 12 = (x+ 3)(x+ 4)

Example 2 Factor x2 − 3x− 40

x2 − 3x− 40 = (x− 8)(x+ 5)
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Factoring Non-monic Quadratics

Often, a quadratic can be factored as if it were by first factoring using
the .

Example 3 Factor 6x2 − 30x+ 36

6x2 − 30x+ 36

= 6(x2 − 5x+ 6)

= 6(x− 2)(x− 3)

Example 4 Solve −4x2 + 36x+ 88

−4x2 + 36x+ 88

= −4(x2 − 9x− 22)

= −4(x− 11)(x+ 2)

If this is not an option, then the following theorem can be used to help factor using the box method.

Theorem

In a 2× 2 box using the box method, the of the values along
each are the same.

Proof

Consider the general expression , which is
distributed using the box method.

Along the first diagonal:

Along the second diagonal: �

Example 5 Factor 5x2 + 28x− 12

The first diagonal contains and .

The second diagonal has sum and product .

=⇒ second diagonal is and .

Finding common factors for each row and column gives

5x2 + 28x− 12 = (5x− 2)(x+ 6)
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Example 6 Factor 12x2 − 24x− 15

12x2 − 24x− 15

= 3(4x2 − 8x− 5)

= 3(2x− 5)(2x+ 1)

Example 7 Factor −12x2 + 58x− 18

−12x2 + 58x− 18

= −2(6x2 − 29x+ 9)

= −2(3x− 1)(2x− 9)

Solving Equations by Factoring

Recall that a to an equation is a value which causes it to be . For quadratic
equations, allows us to use the to find the solutions.

Example 8 Solve x2 + 15x+ 36 = 0

x2 + 15x+ 36 = 0

(x+ 3)(x+ 12) = 0

x+ 3 = 0 or x+ 12 = 0

x = −3 or x = −12

Example 9 Solve x2 + 5 = 8x+ 14

x2 + 5 = 8x+ 14

x2 − 8x− 9 = 0

(x− 9)(x+ 1) = 0

x− 9 = 0 or x+ 1 = 0

x = 9 or x = −1

Example 10 Solve 4x2 + 25x− 21 = 0

4x2 + 25x− 21 = 0

(4x− 3)(x+ 7) = 0

4x− 3 = 0 or x+ 7 = 0

x = 3
4 or x = −7

Example 11 Solve 20x2 − 56x− 12 = 0

20x2 − 56x− 12 = 0

��4(5x2 − 14x− 3) = 0

(5x+ 1)(x− 3) = 0

5x+ 1 = 0 or x− 3 = 0

x = −1
5 or x = 3
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Graphing Using Factoring

We’ve already graphed quadratic functions in . Using the same methods, we
can graph quadratic functions in if they can be .

Example 12 Sketch a graph of f(x) = x2 + x− 2.

factor: f(x) = (x+ 2)(x− 1)

x-intercepts: (−2, 0) and (1, 0)

f(x) = 0 =⇒ x = −2 or x = 1

y-intercept: (0,−2)

vertex: (−0.5,−2.25)

h = (−2)+1
2 = −0.5

k = f(h) = (−0.5)2 + (−0.5)− 2 = −2.25

endpoints: none, as domain is R

x

y

Example 13 Sketch a graph of g(x) = −2x2 +9x− 9.

factor: g(x) = (−2x+ 3)(x− 3)

x-intercepts: (1.5, 0) and (3, 0)

g(x) = 0 =⇒ x = 1.5 or x = 3

y-intercept: (0,−9)

vertex: (2.75, 1.125)

h = 2.5+3
2 = 2.75

k = g(h) = −2(2.75)2 + 9(2.75)− 9

= 1.125

endpoints: none, as domain is R

x

y
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3.6 Completing the Square

While many quadratic expressions can be directly using the methods in the previous
sections, most cannot. Instead, we use can a technique called .

The goal is to rewrite the expression so that it contains a , which is then

factored. The result is an expression in . This makes it possible to
the related , or the related .

The diagram to the right shows that
x2 + 6x + 4 is not a perfect square, but its
square can be by adding and

subtracting .

x2

x

x

x

x x x

1 1 1

1 +1 +1

+1 +1 +1

−1

−1

−1

−1

−1

Example 1 Solve x2 + 6x+ 4 = 0 by completing the square.

Step 1: Identify the constant which completes
the square. x2 + 6x+4

want to be + 9
= 0

Step 2: Add and subtract to complete the perfect
square. x2 + 6x+ 9

perfect square
−5 = 0

Step 3: Factor the perfect square to get vertex
form. (x+ 3)2 − 5 = 0

Step 4: Solve using the square root method.
(x+ 3)2 = 5

x+ 3 = ±
√
5

x = −3±
√
5
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Example 2 Solve x2 − 10x+ 7 = 0

x2 − 10x+7
want to be +25

= 0

x2 − 10x+ 25− 18 = 0

(x− 5)2 − 18 = 0

(x− 5)2 = 18

x− 5 = ±3
√
2

x = 5± 3
√
2

Example 3 Solve x2 + 2x− 5 = 0

x2 + 2x−5
want to be + 1

= 0

x2 + 2x+ 1− 6 = 0

(x+ 1)2 − 6 = 0

(x+ 1)2 = 6

x+ 1 = ±
√
6

x = −1±
√
6

Example 4 Solve x2 + 3x+ 1 = 0

x2 + 3x+1

want to be + 9
4

= 0

x2 + 3x+ 9
4 −

5
4 = 0(

x+ 3
2

)2 − 5
4 = 0(

x+ 3
2

)2
= 5

4

x+ 3
2 = ±

√
5
2

x = −3
2 ±

√
5
2

Example 5 Solve 4x2 + 20x+ 18 = 0

4x2 + 20x+18
want to be + 25

= 0

4x2 + 20x+ 25− 7 = 0

(2x+ 5)2 − 7 = 0

(2x+ 5)2 = 7

2x+ 5 = ±
√
7

2x = −5±
√
7

x = −5
2 ±

√
7
2

Example 6 Write f(x) = x2 − 8x + 13 in
vertex form.

f(x) = x2 − 8x+ 13

= x2 − 8x+ 16− 3

= (x− 4)2 − 3

Example 7 Write g(x) = −2x2 − 20x − 59

in vertex form.

g(x) = −2x2 − 20x− 59

= −2
(
x2 + 10x+ 59

2

)
= −2

(
x2 + 10x+ 25 + 9

2

)
= −2

[
(x+ 5)2 + 9

2

]
= −2(x+ 5)2 − 9
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Example 8 Sketch a graph of f(x) = x2 − 6x+ 1.

x-intercepts: (3− 2
√
2, 0) and (3 + 2

√
2, 0)

f(x) = x2 − 6x+ 9− 8

= (x− 3)2 − 8

= 0

(x− 3)2 = 8

x− 3 = ±2
√
2

x = 3± 2
√
2

y-intercept: (0, 1)

vertex: (3,−8)

endpoints: none, as domain is R

x

y
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3.7 The Quadratic Formula
An alternative method to is using a to directly find

the to a quadratic equation.

Theorem: The Quadratic Formula

A quadratic equation in standard form, , can be solved

directly using the formula

x =
−b±

√
b2 − 4ac

2a

Proof

ax2 + bx+ c = 0

x2 +
b

a
x+

c

a
= 0 divide both sides by a (1)

x2 +
b

a
x+

b2

4a2
− b2

4a2
+

c

a
= 0 complete the square (2)(

x+
b

2a

)2

− b2 − 4ac

4a2
= 0 factor and simplify (3)(

x+
b

2a

)2

=
b2 − 4ac

4a2
isolate squared expression (4)

x+
b

2a
= ±

√
b2 − 4ac

2a
take the square root (5)

x =
−b±

√
b2 − 4ac

2a
finish solving for x (6)

�

The quantity is known as the , denoted by , the upper case
Greek letter . We can use it to state a simplified version of the quadratic formula.

x =
−b±

√
∆

2a
where ∆ = b2 − 4ac
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Example 1 Solve 2x2 + x− 28 = 0

a = 2, b = 1, c = −28

x =
−b±

√
b2 − 4ac

2a

=
−(1)±

√
(1)2 − 4(2)(−28)
2(2)

=
−1±

√
225

4

=
−1± 15

4

x =
−1− 15

4
or x =

−1 + 15

4
x = −4 or x = 7

2

Example 2 Solve 3x2 = 2x+ 2

3x2 − 2x− 2 = 0

a = 3, b = −2, c = −2
∆ = b2 − 4ac

= (−2)2 − 4(3)(−2)
= 28

x =
−(−2)±

√
28

2(3)

=
2± 2

√
7

6

=
1

3
±
√
7

3

Counting Real Solutions

The of the is particularly useful for finding the number of

to a quadratic equation. This also corresponds to the number of
in the of a quadratic function.

∆ > 0 ∆ = 0 ∆ < 0

solutions
−b±

√
+ve

2a

−b
2a

−b±
√
ve

2a

number of real
solutions two one zero

x-intercepts x x x
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Graphing Quadratic Functions in Standard Form

Recall that the x-coordinate of the , h, is
the of the of the function.

Since the of the function are given by the
, we get that their average

is given by

h = − b

2a

This formula holds even if there are not two real zeros.

x

(h, k)

This gives us the final tools we need for graphing quadratic functions in standard form.

shape of curve parabola with enough points to show stretch/compression
vertex (h, k), using h = − b

2a and k = f(h)

x-intercepts
y = 0, find x by solving f(x) = 0 using factoring, completing
the square, or quadratic formula

y-intercept (0, c)

endpoints evaluate the function at the bounds of the domain

Example 3 Sketch a graph of f(x) = −0.5x2 − 3.2x+ 5.8, with x-intercepts to 2 decimal places.

a = −0.5, b = −3.2, c = 5.8

x-intercepts: (−7.87, 0) and (1.47, 0)

x =
−(−3.2)±

√
(−3.2)2 − 4(−0.5)(5.8)
2(−0.5)

= −7.87 or 1.47

y-intercept: (0, 5.8)

vertex: (−3.2, 10.92)

h = − −3.2
2(−0.5) = −3.2

k = f(−3.2) = 10.92

endpoints: none, as domain is R

x

y
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Example 4 Sketch a graph of g : [0, 6)→ R, where g(x) = 2x2 − 8x+ 11

a = 2, b = −8, c = 11

x-intercepts: none
∆ = (−8)2 − 4(2)(11) = −24

y-intercept: (0, 11)

vertex: (2, 3)

h = − −82(2) = 2

k = g(2) = 2(2)2 − 8(2) + 11 = 3

endpoints: (0, 11) and (6, 35)

x

y

Converting Quadratics Between Forms
Throughout this chapter we’ve seen examples of converting between the three forms of quadratic
functions. This diagram summarizes those methods.

vertex
form

standard
form

factored
form

In practice, if converting between vertex and factored forms, it’s often easier to convert to standard
form first.
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4.1 Complex Numbers
Recall that some have , even if they are
something simple, such as

x2 + 1 = 0

We can solve equations like this by introducing numbers outside the set of real numbers, known
as .1

The , denoted by , is a number defined as having the property

i2 = −1 =⇒
√
−1 = i

and is a solution to the equation above.

The of i follow a very particular pattern:

i0 1

i1 i

i2 −1

i3 i2 · i = −1 · i −i

i4 i3 · i = −i · i = −i2 1

i5 i4 · i = 1 · i i

i6 i5 · i = i · i = i2 −1

i7 i6 · i = −1 · i −i

i8 i7 · i = −i · i = −i2 1

i0 = 1

i

i2 = −1

−i

·i·i

·i ·i

Example 1 Evaluate each of the following.

i27 = (i4)6 · i3

= 16 · (−i)
= −i

i394 = (i4)98 · i2

= 198 · (−1)
= −1

i−23 = (i4)−6 · i1

= 1−6 · i
= i

1Don’t let the name fool you! Imaginary numbers may be abstract, but so are all numbers, and that doesn’t mean
they don’t exist. Imaginary numbers have many applications in science and engineering. The mathematical terms
real and imaginary are not entirely accurate, but they’ve been around for so long that we’re stuck with them.
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An is any multiplied by .

A is any number of the form where a and b are real numbers.
Note that if , the resulting complex number is real. Therefore, the real numbers are a

of the complex numbers.

Typed Written Name Description

C the complex
numbers

The set containing all and
numbers, and their linear combinations.

For a given complex number, z, the is denoted by , and the

is denoted by .

Example 2 Find the real and imaginary parts of each of the following.

z1 = 3 + 7i

Re(z1) = 3

Im(z1) = 7

z2 = −5 + 11i

Re(z2) = −5
Im(z2) = 11

z3 = 9− 13i

Re(z3) = 9

Im(z3) = −13

Adding and Subtracting Complex Numbers

To add and subtract complex numbers, add and subtract the and parts
of the numbers independently. That is,

Re(z1 ± z2) = Re(z1)± Re(z2) Im(z1 ± z2) = Im(z1)± Im(z2)

Example 3 Evaluate the following using z1, z2 and z3 above.

z1 + z2 = (3− 5) + (7 + 11)i

= −2 + 18i

z2 + z3 = (−5 + 9) + (11− 13)i

= 4− 2i

z3 − z1 = (9− 3) + (−13− 7)i

= 6− 20i

z1 − z2 = (3 + 5) + (7− 11)i

= 8− 4i
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Multiplying Complex Numbers

Complex numbers can be multiplied using the as usual, which we

can represent using the . Don’t forget to replace with .

Example 4 Evaluate (2 + 5i)(3− 7i)

(2 + 5i)(3− 7i) = 41 + i

Example 5 Evaluate (−1− 8i)(5− 4i)

(−1− 8i)(5− 4i) = −37− 36i

Complex Conjugates

The of a complex number is the result of the of the

imaginary part of the number. The real part is . is denoted by

a over the number or variable.

Example 6 Find the conjugate of each of the following.

z1 = 3 + 7i

z1 = 3− 7i

z2 = −5 + 11i

z2 = −5− 11i

z3 = 9− 13i

z3 = 9 + 13i

Example 7 Multiply z = 3− 4i by its conjugate.

zz̄ = (3− 4i)(3 + 4i)

= 9 + 12i− 12i+ 16

= 25

70 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 4.1 Complex Numbers

Dividing Complex Numbers

When we divide, the aim is to write the final result in the form , which takes a little
more algebraic manipulation than the other operations.

This method relies on the property that the of a complex number and its

is a .

1. Write the division as a .

2. both the and by the of the

.

3. Evaluate each .

4. Simplify to the form .

Example 8 Simplify 2

3 + 5i

2

3 + 5i
=

2(3− 5i)

(3 + 5i)(3− 5i)

=
6− 10i

34

= 3
17 −

5
17i

Example 9 Simplify 3 + 4i

5− 2i

3 + 4i

5− 2i
=

(3 + 4i)(5 + 2i)

(5− 2i)(5 + 2i)

=
7 + 26i

29

= 7
29 +

26
29i
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4.2 Quadratic Equations with Complex Solutions

Recall that when the of a quadratic equation, ∆ = b2 − 4ac, is ,

the equation has no solutions. It turns out that these equations do indeed have solutions.

Theorem

Every quadratic equation ax2 + bx + c = 0 has (when multiplicity2

is considered), whose nature is determined by the ∆ = b2 − 4ac:

1. If ∆ > 0, then there are .

2. If ∆ = 0, then there is with a multiplicity2 of two.

3. If ∆ < 0, then there are .

Example 1 Solve each of the following equations with complex solutions.

x2 + 9 = 0

x2 = −9
x = ±

√
−9

= ±
√
9
√
−1

= ±3i

x2 + 75 = 0

x2 = −75
x = ±

√
−75

= ±
√
75
√
−1

= ±5
√
3i

(x+ 4)2 + 36 = 0

(x+ 4)2 = −36
x+ 4 = ±

√
−36

= ±6i
x = −4± 6i

Generally, quadratic equations with complex solutions can be solved in the usual way using
or .

Example 2 Determine the nature of the solutions of x2 = 2x− 5, then solve it.

x2 − 2x+ 5 = 0 =⇒ a = 1, b = −2, c = 5

∆ = (−2)2 − 4(1)(5) = −16 < 0 =⇒ The solutions are complex conjugates.

x2 − 2x+ 1 + 4 = 0

(x− 1)2 = −4
x− 1 = ±

√
4
√
−1 = ±2i

x = 1± 2i

2Multiplicity will be discussed in more detail in the Polynomials chapter.

72 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 4.2 Quadratic Equations with Complex Solutions

Example 3 For each equation, determine the nature of the solutions. Verify by solving.

−3x2 + 4x− 2 = 0

a = −3, b = 4, c = −2

∆ = (4)2 − 4(−3)(−2) = −8 < 0

=⇒ Two complex conjugates solutions.

x =
−(4)±

√
−8

2(−3)

=
−4± 2

√
2i

−6
= 2

3 ±
√
2
3 i

4x2 + 25 = 20x

4x2 − 20x+ 25 = 0

a = 4, b = −20, c = 25

∆ = (−20)2 − 4(4)(25) = 0

=⇒ One real solution.

x =
−(−20)±

√
0

2(4)

=
20

8
= 5

2

3x2 + 6x = 1

3x2 + 6x− 1 = 0

a = 3, b = 6, c = −1

∆ = (6)2 − 4(3)(−1) = 48 > 0

=⇒ Two real solutions.

x =
−(6)±

√
48

2(3)

=
−6± 4

√
3

6

= −1± 2
√
3

3
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4.3 Systems Involving Quadratic Equations
Quadratic-Linear Systems

Previously, we’ve worked with systems consisting of only . We now have

the tools necessary to solve systems when are included as well.

The meaning of a to a quadratic-linear system is unchanged. A solution consists of
values for which satisfy simultaneously (at the same

time.) Because quadratics are involved, there may be , or real solutions.

As with , the goal is to algebraically manipulate the system so that all

variables except one are , resulting in a , which can be solved
by the usual means.

Don’t forget to !

Example 1 Solve the system.{
y = x2 + 6x− 33 (1)

y = 3x− 5 (2)

Equate y from each equation:

x2 + 6x− 33 = 3x− 5

x2 + 3x− 28 = 0

(x+ 7)(x− 4) = 0

x = −7 or x = 4

Substitute into (2):

y = 3(−7)− 5 = −26
y = 3(4)− 5 = 7

Solutions: (−7,−26) and (4, 7)

Example 2 Solve the system to 2 decimal places.{
x+ 3y = 6 (1)

y = x2 − 5 (2)

Substitute (2) into (1):

x+ 3(x2 − 5) = 6

3x2 + x− 15 = 6

3x2 + x− 21 = 0

x =
−(1)±

√
(1)2 − 4(3)(−21)
2(3)

= −2.8177 or 2.4843

Substitute into (2):

y = (−2.8177)2 − 5 = 2.94

y = (2.4843)2 − 5 = 1.17

Solutions: (−2.82, 2.94) and (2.48, 1.17)
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Example 3 Graphically find the solutions to
the system{

y = −x2 + 6x− 2

x+ y = 4

The curve for y = −x2 + 6x − 2 is already
plotted.

Line x + y = 4 has intercepts at (0, 4)
and (4, 0).
Solutions: x = 1, y = 3
and x = 6, y = −2.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8 y = −x2 + 6x− 2

x

y

Example 4 Determine the number of real solutions of the system{
y = 5x+ 11

y = −x2 + 2x+ 8

5x+ 11 = −x2 + 2x+ 8

x2 + 3x+ 3 = 0

∆ = b2 − 4ac

= 32 − 4(1)(3)

= −3 < 0

=⇒ there are no real solutions.

Example 5 Find k such that the system has exactly one solution.{
y = −x2 + 4x− 4

y = kx− 3

kx− 3 = −x2 + 4x− 4 Equate y from each equation.
x2 + (k − 4)x+ 1 = 0

∆ = b2 − 4ac = 0 As we want one solution.
(k − 4)2 − 4 = 0

(k − 4)2 = 4

k − 4 = ±2
k = 4± 2

k = 2 or k = 6
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Identifying Quadratics using Linear Systems

Suppose we know that a function f is quadratic, and that f(3) = 5. The function can be written
in standard form as

f(x) = ax2 + bx+ c

which, by substituting x = 3 and f(x) = 5, becomes the equation

9a+ 3b+ c = 5

Is it possible to identify f(x) from this equation?

No, because there is only one equation with three unknowns: a, b and c.

Recall that a system in requires to be solvable.

Theorem

A function can be if it has at
points on the domain.

Example 6 Find the quadratic function f which satisfies f(3) = 5, f(0) = −1 and f(4) = 15.

Let f(x) = ax2 + bx+ c, which creates the system:
9a+ 3b+ c = 5

c = −1
16a+ 4b+ c = 15

c = −1 =⇒

{
9a+ 3b− 1 = 5

16a+ 4b− 1 = 15
=⇒

{
9a+ 3b = 6 (1)

16a+ 4b = 16 (2)

Multiplying (1) by 4 and (2) by 3:{
−36a− 12b = −24
48a + 12b = 48

=⇒ 12a = 24 =⇒ a = 2

Substituting into (1):

18 + 3b = 6 =⇒ 3b = −12 =⇒ b = −4

=⇒ f(x) = 2x2 − 4x− 1
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4.4 Quadratic Regression

Recall that is the process of fitting a modeling function to a set of data in order
to approximate the relationship between variables.

uses a function for the model. It is typical to use

the form of the function. In practice, this means choosing values for , and
so that fits the data as well as possible.

The has the same meaning as for linear regression: it is
a measure of how well the regression curve fits the data. For non-linear regression, has no
relation to .

Example 1 A camera captures the flight of a ball after it is thrown. The frames are analyzed, and
the following data is recorded showing the horizontal distance, x, of the ball from where it was
thrown versus its vertical height above the ground, y.

x (ft) 1.0 3.0 5.0 7.0 9.0 11.0

y (ft) 7.3 9.6 11.6 13.4 15.1 16.3

Use quadratic regression to model the flight of the ball.

Using technology,

a = −0.0299, b = 1.2632, c = 6.0631, R2 = 0.9998

y = −0.0299x2 + 1.2632x+ 6.0631

Once technology is used to perform a
, it is usually simple to use

the same technology to the modeling
function with the data, and perform further
calculations related to the function.

10 20 30 40 50

10

20

x (ft)

y
(ft

)
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Example 2 Comment on how well the model fits the data.

The value of R2, which is close to 1, suggests the model is a very good fit. This
is supported by a visual inspection of the data and the model.

Example 3 Estimate the height of the ball after it has traveled 6.4 ft.

When x = 6.4, we have

y = −0.0299(6.4)2 + 1.2632(6.4) + 6.0631

= 12.9 ft

Example 4 Predict the maximum height of the ball, and the distance it will travel before hitting
the ground.

Using technology, the modeling function has a vertex at (21.116, 19.4) and an
xintercept at (46.584, 0).
Maximum height: 19.4 ft. Distance travelled: 46.6 ft.

Note that to answer the previous example, we had to use , which may make
the prediction unreliable. In this case, physics predicts that a ”projectile” (such as the ball in
the examples) has a parabolic path, which increases our confidence in our quadratic model, so the
predictions seem sensible.

But suppose that someone catches the ball before it hits the ground. Then our prediction of the
distance the ball will travel is incorrect. Always be careful using , as additional
information may be needed to accept or reject our predictions.
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5.1 Polynomial Concepts
A is an expression which, in standard form, can be written as

anx
n + an−1x

n−1 + · · · + a1x + a0

where

• n, and the following decreasing exponents, are greater than or equal to .

• an, an−1, . . . , a0 are (real numbers1).

• an ̸= 0.

The largest , n, is called the of the polynomial.

The of a polynomial are the separate expressions of the form aix
i. The

is the of its .

Example 1 Write P (x) = 9x2 − 3x3 − 11 + 12x5 − 2x+ 7x2 + 5 in standard form.

P (x) = 12x5 − 3x3 + 16x2 − 2x− 6

Naming Polynomials by Degree

degree name example

0 constant 7

1 linear 3x− 9

2 quadratic 5x2 + 9x

3 cubic −4x3 − 7x+ 1

4 quartic 12x4 − 8x2 + 11x

5 quintic −3x5 + x3

If the polynomial has a higher degree, it can be referred to as a .

For example, 5x9 − x8 + 6x7 is a .

1In general, mathematicians consider polynomials with coefficients of all sorts of number types. For us, they will
always be real.
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Naming Polynomials by Number of Terms

terms name example

1 monomial 5x3

2 binomial 5x+ 6

3 trinomial x5 − 4x3 + 9x2

The name is a generalization of these names, with the prefix meaning
any number of terms fits the definition.

Example 2 x4 − 7x2 is a .

Adding and Subtracting Polynomials

To add or subtract polynomials, add or subtract the of with matching
exponents.

Example 3 Add 3x4 + 7x3 − 9x2 + 5

and −8x4 + 5x3 + 2x− 3.

( 3x4 +7x3 −9x2 +5 )
+ ( −8x4 +5x3 +2x −3 )

−5x4 +12x3 −9x2 +2x +2

Example 4 Subtract 5x4 − 3x2 + 4x− 11

and x4 − 7x3 + 9x2 − 6.

( 5x4 −3x2 +4x −11 )
− ( x4 −7x3 +9x2 −6 )

4x4 +7x3 −12x2 +4x −5

Multiplying Polynomials

Polynomials are multiplied using the , which was covered in Sec. 3.3.

Example 5 Distribute (2x2 − 7x)(x5 + 3x3 − 9x2)

(2x2 − 7x)(x5 + 3x3 − 9x2) = 2x7 − 7x6 + 6x5 − 39x4 + 63x3
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5.2 Cubic Functions
Graphing polynomials becomes more difficult as their degree increases past two. An exception is
functions resulting from applied to the .

parent function

f(x) = x3

domain

R

range

R

relation type

onetoone
x-intercept

(0, 0)

y-intercept

(0, 0)

point of inflection

(0, 0)

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

The graphs of cubic functions have a point of
, which is a point where the

changes direction.

In the case of the parent function f(x) = x3, the curve
changes from to
at (0, 0).

Note that while the parent cubic function is
, this is not true of all cubic functions,

including the one shown in the diagram here.
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Graphing Cubic Functions Using Transformations

By applying to the cubic parent function, we get the form

. Only a tiny subset of cubic functions can be written in this
form. A sketch of this type of cubic function should include:

shape of curve cubic curve with enough points to show stretch/compression
point of inflection (h, k), using translation of parent function to identify

x-intercept y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0)

endpoints evaluate the function at the bounds of the domain
Example 1 Sketch f(x) = 1

2(x− 3)3 + 4.

Orientation: Upright Point of Inflection: (3, 4)

x-intercept: (1, 0)
1
2(x− 3)3 + 4 = 0

1
2(x− 3)3 = −4
(x− 3)3 = −8

x− 3 = 3
√
−8 = −2 =⇒ x = 1

y-intercept: (0,−9.5)
as f(0) = 1

2(−3)
3 + 4 = −9.5

endpoints: none, as domain is R

x

y

Example 2 Find the function g represented by the following graph.

(7, 25)

12

(2, 50)

x

y Point of inflection: (7, 25)

h = 7, k = 25 =⇒ g(x) = A(x− 7)3 + 25

Other point: (2, 50)

g(2) = (−5)3A+ 25 = 50

−125A = 25 =⇒ A = −1
5

g(x) = −1
5
(x− 7)3 + 25
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5.3 Special Cubics
Theorem: Perfect Cubes

a3 + 3a2b + 3ab2 + b3 = (a + b)3

a3 − 3a2b + 3ab2 − b3 = (a− b)3

Proof

(a+ b)3 = (a+ b)(a+ b)2

= (a+ b)(a2 + 2ab+ b2)

= a(a2 + 2ab+ b2) + b(a2 + 2ab+ b2)

= a3 + 2a2b+ ab2 + a2b+ 2ab2 + b3

= a3 + 3a2b+ 3ab2 + b3

Replace b with −b to obtain the second result. �

Theorem: Sums and Differences of Cubes

a3 + b3 = (a + b)(a2 − ab + b2)

a3 − b3 = (a− b)(a2 + ab + b2)

Proof

(a+ b)(a2 − ab+ b2)

= a(a2 − ab+ b2) + b(a2 − ab+ b2)

= a3 ����− a2b����+ ab2 ����+ a2b����− ab2 + b3

= a3 + b3

Replace b with −b to obtain the second result. �
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As with the special quadratics in section 3.4, we can use these rules to quickly and
certain expressions.

Example 1 Distribute (x− 5)3

Using a = x and b = 5,

(x− 5)3 = x3 − 15x2 + 75x− 125

Example 2 Distribute (x+ 4)(x2 − 4x+ 16)

Using a = x and b = 4,

(x+ 4)(x2 − 4x+ 16) = x3 + 64

Example 3 Distribute (3x+ 7)3

Using a = 3x and b = 7,

(3x+ 7)3 = 33x3 + 3 · 32 · 7x2 + 3 · 3 · 72x+ 73

= 27x3 + 189x2 + 441x+ 343

Example 4 Factor x3 − 1331

Using a = x and b = 11,

x3 − 1331 = (x− 11)(x2 − 11x+ 121)

Example 5 Factor x3 + 12x2 + 48x+ 64

Using a = x and b = 4,

x3 + 12x2 + 48x+ 64 = (x+ 4)3

Example 6 Factor 729x3 − 512

Using a = 9x and b = 8,

729x3 − 512 = (9x− 8)(81x2 + 72x+ 64)

Some expressions can be factored by combining these rules with others we’ve already learned.

Example 7 Factor 2x8 − 1458x2

2x8 − 1458x2 = 2x2(x6 − 729) using GCF
= 2x2(a2 − 272) where a = x3

= 2x2(a− 27)(a+ 27) using difference of squares
= 2x2(x3 − 27)(x3 + 27)

= 2x2(x− 3)(x2 + 3x+ 9)(x+ 3)(x2 − 3x+ 9)

using diff. and sum of cubes
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5.4 Polynomial Division
Recall from elementary school, before you learned decimals and fractions, that of

results in a when the isn’t exact.

Example 1

19÷ 7 = 2 R 5 because 19 = 7 · 2 + 5

35÷ 8 = 4 R 3 because 35 = 8 · 4 + 3

63÷ 11 = 5 R 8 because 63 = 11 · 5 + 8

Note that the will always be smaller than the . The part of the result
which is not the remainder is called the .

, as it turns out, are in a manner very similar to .2

Example 2 Verify that when P (x) = x4 − x3 − 13x2 + 28x− 9 is divided by x− 3, the quotient is
Q(x) = x3 + 2x2 − 7x+ 7 and the remainder is 12.

(x− 3) ·Q(x) + 12 = (x− 3)(x3 + 2x2 − 7x+ 7) + 12

= x4 − x3 − 13x2 + 28x− 21 + 12

= x4 − x3 − 13x2 + 28x− 9

= P (x), as required.

The goal of is to find the and the . There

are several methods that can be used, but we will use a variation of the as we
are already familiar with it.

2This isn’t just a coincidence as it seems to be. Mathematicians actually consider the set of integers and the set
of polynomials to have the same underlying algebraic structure.
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In the final result, the is placed along the left-hand side of the box grid, and the
is placed along the top. The original is mostly contained within the

grid, but won’t fit perfectly if there is a .

Step 1: Construct the box grid with the along the
.

Step 2: Place the of the original polynomial in
the .

Step 3: Remembering that the usual rules
for the box method apply, complete the entry the
last entry.

Step 4: Use to complete the column.

Step 5: Complete the next cell in the so that
its completes the in the original
polynomial.

Step 6: Repeat steps 3 to 5 until the is
.

Step 6: so that the
of the polynomial is complete.

R

Example 3 Divide P (x) = x3 − 2x2 − 21x+ 7 by x+ 4.

P (x) = (x+ 4)(x2 − 6x+ 3)− 5

or equivalent ly

P (x)

x+ 4
= x2 − 6x+ 3− 5

x+ 4
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Example 4 Divide P (x) = 4x3 − 6x2 + 8 by x− 2.

P (x) = (x− 2)(4x2 + 2x+ 4) + 16

or equivalent ly

P (x)

x− 2
= 4x2 + 2x+ 4 +

16

x− 2

Example 5 Divide x4 + x3 − 17x2 − 42x− 66 by x2 + 3x+ 4.

Let P (x) = x4 + x3 − 17x2 − 42x− 66

P (x) = (x2+3x+4)(x2−2x−15)+11x−6

or equivalent ly

P (x)

x2 + 3x+ 4
= x2 − 2x− 15 +

11x− 6

x2 + 3x+ 4

The Remainder Theorem

Recall that in integer division, the is always less than the .

A related idea for polynomials is described by the following theorem.

Theorem

In , if there is a , its is always
less than the of the .

If the is , then the must be a .

We can easily confirm that this is true for the examples above. In the particular case of a linear
divisor, the following theorem is very important:
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The Remainder Theorem

Suppose a , P (x), is
by a , x− a.

Then the is equal to P (a).

Proof

Let Q(x) be the quotient, and let R be the remainder.

P (x) = (x− a) ·Q(x) +R

P (a) = (a− a) ·Q(a) +R

= �����
0 ·Q(a) +R

= R �

Example 6 Confirm the remainder from example 3, dividing P (x) = x3− 2x2− 21x+7 by x+4.

P (−4) = (−4)3 − 2(−4)2 − 21(−4) + 7 = −5

Example 7 Confirm the remainder from example 4, dividing P (x) = 4x3 − 6x2 + 8 by x− 2.

P (2) = 4(2)3 − 6(2)2 + 8 = 16

If the linear divisor is not , then we can use this updated version of the theorem.

Generalized Remainder Theorem

Suppose a , P (x), is by a
which equals when x = a.

Then the is equal to P (a).

Example 8 Suppose P (x) = 2x3 − x2 + kx + 27 is divided by 2x − 3, and the remainder is 9.
Find the value of k.

2x− 3 = 0 when x = 3
2

P
(
3
2

)
= 2

(
3
2

)3 − (
3
2

)2
+ k

(
3
2

)
+ 27

= 3
2k + 63

2 = 9
3
2k = −45

2

k = −15
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5.5 Factoring Polynomials
Suppose that a P (x) is divided by a particular x − a, and that the

result is a Q(x) with . This means we can write the statement

P (x) = (x− a)Q(x) + ���
0

R

= (x− a)Q(x)

which means that x− a is a of P (x).

The following is a special case of the , when there is
.

The Factor Theorem

x− a is a of the P (x)

iff (if and only if) P (a) = 0.

This suggests a method we can use to the polynomial P (x):

Step 1: Find a value a for which P (a) = 0, which means x− a is a .

Step 2: P (x) by x− a.

Step 3: Continue by the resulting .

Example 1 Factor P (x) = x3 − 21x+ 20.

By trying different values of P (a), we get
P (1) = (1)3 − 21(1) + 20 = 0

=⇒ x− 1 is a factor.

P (x) = x3 − 21x+ 20

= (x− 1)(x2 + x− 20)

= (x− 1)(x− 4)(x+ 5)
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Example 2 Solve 2x3 − 7x2 − 8x+ 28 = 0

Let P (x) = 2x3 − 7x2 − 8x+ 28

P (2) = 2(2)3 − 7(2)2 − 8(2) + 28 = 0

=⇒ x− 2 is a factor.

P (x) = 2x3 − 7x2 − 8x+ 28

= (x− 2)(2x2 − 3x− 14)

= (x− 2)(2x− 7)(x+ 2)

= 0

x− 2 = 0 or 2x− 7 = 0 or x+ 2 = 0

x = 2 or x = 7
2 or x = −2

Example3 Factor P (x) = x5−5x4−25x3+65x2+84x

P (x) = x5 − 5x4 − 25x3 + 65x2 + 84x

= x(x4 − 5x3 − 25x2 + 65x+ 84
Q(x)

)

Q(3) = (3)4−5(3)3−25(3)2+65(3)+84 = 0

=⇒ x− 3 is a factor of Q(x).

P (x) = xQ(x)

= x(x− 3)(x3 − 2x2 − 31x− 28
R(x)

)

R(−1) = (−1)3−2(−1)2−31(−1)−28 = 0

=⇒ x+ 1 is a factor of R(x).

P (x) = x(x− 3)R(x)

= x(x− 3)(x+ 1)(x2 − 3x− 28)

= x(x− 3)(x+ 1)(x− 7)(x+ 4)
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5.6 Graphs of Polynomial Functions

Recall that a polynomial is a type of . If it is treated as a function, then it is

called a .

When the graphs of polynomial functions, we’ll need to think about how the

function in two different ways:

• , which means we only consider the immediate vicinity (close to) the
we’re interested in; and

• , which means we consider the function over its entire .

Zeros, x-Intercepts andMultiplicity

For a polynomial function, as with all functions, the of its graph correspond to

the of the function, which are the values which cause the values
to equal zero.

Example 1 Find the zeros of f(x) = (x+1)2(x− 1)3(x− 2), and find the x-intercepts of its graph.

f(x) = 0 =⇒ x = −1 or x = 1 or x = 2.

Zeros are 1, 1 and 2. xintercepts are (1,0), (1,0), (2,0).

How many zeros are there in this example? If we count them, the simple answer is . If
we’re being more precise, we would say this is the number of zeros.

But that’s not the only way to count. Note that 1 is a because (x− 1) is a of
the polynomial. But it’s not a just once, but times. So we can say that 1 is
a . When we count the with , there

are .

If a zero has 1 2 3

the function behaves like it is linear quadratic cubic

and the x-intercept is a
simple
intercept vertex point of

inflection

The is found as in any function, at the point .

92 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 5.6 Graphs of Polynomial Functions

−1 1 2

2

x

y Example 2 Identify the zeros and their multiplicity of the
polynomial function f shown in the graph.

(−1, 0) is a vertex.
=⇒ x = −1 is a zero with multiplicity 2.
(1, 0) is a point of inflection.
=⇒ x = 1 is a zero with multiplicity 3.
(2, 0) is a simple intercept.
=⇒ x = 2 is a zero with multiplicity 1.
Note that this is the same function as in example 1.

Positive and Negative Intervals

A is an interval of the domain on which the value of the function is

, and its graph is the x-axis.

A is an interval of the domain on which the value of the function is

, and its graph is the x-axis.

Keep in mind that a function’s value is at its zeros (by definition), and so is neither
or .

If a polynomial function changes , it will be at a , but not every causes

a change in .

−1 1 2

2

x

y Example 3 Identify the positive and negative intervals for
the polynomial function f shown in the graph.

f is positive on the interval

(−∞,−1) ∪ (−1, 1) ∪ (2,∞)

f is negative on the interval

(1, 2)
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Minima andMaxima

A of a function is a point at which the function has a greater value than any
points nearby. A of a function is a point at which the function has a lesser
value than any nearby points nearby. For polynomial functions, these points occur at .

The of a function is the point at which the function has a greater value than
at other point in the domain. If it exists, it corresponds with either a

or an . Similarly, the has a value less

than every other point and, if it exists, corresponds with a or an .

−1 1 2

2

(−0.28, 2.48)

(1.78,−0.81)

x

y Example 4 Identify the (approximate) local and global
maxima and minima for the polynomial function f shown
in the graph.

f has a local maximum at (−0.28, 4.48)

and has no global maximum.

f has local minima at (−1, 0), (1.78,−0.81)

and has its global minimum at (1.78,−0.81).

Domain and Range

Polynomials can be evaluated for every real number, so the domain of a polynomial

function is . If a graph shows , however, the domain has been .

Knowing the global and/or , if they exist, will typically allow us to
find the .

Example 5 State the range of the function above.

(−0.81,∞)
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Increasing and Decreasing

f is said to be if f(x) increases as x increases, which implies slope.

f is said to be if f(x) decreases as x increases, which implies slope.

−1 1 2

2

(−0.28, 2.48)

(1.78,−0.81)

x

y Example 6 Identify the increasing and decreasing
intervals for the polynomial function f shown in the graph.

f is increasing on the interval

(−1,−0.28) ∪ (1.78,∞)

f is decreasing on the interval

(−∞,−1) ∪ (−0.28, 1.78)

Example 7 Find a polynomial function g to fit the following graph.

52

5

(4, 1)

x

y The zeros of the function are
• 2 with multiplicity 2
• 5 with multiplicity 1

So a candidate for the function is

y = (x− 2)2(x− 5)

But if x = 0, then y = (−2)2(−5) = −20,
which doesn't match the yintercept.
We can use a reflection and compression to
change the yintercept without changing the
xintercepts.

g(x) = −1
4
(x− 2)2(x− 5)

Technology can be used to verify that this is
the correct function.
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6.1 Simplifying Rational Expressions
Recall that a is a number which can be written in the form of a fraction,
where the and are both .

Examples Non-examples
−5

6
2
3 7 = 7

1

0.75 = 3
4

√
25 = 5

1

√
11 π 3

√
14 i 4

√
19

Similarly, a is an expression which can be written in the form of a

fraction, where the and are both .

Examples Non-examples

1

x

x+ 3

x− 4

x3 + 2x2 − 4x+ 5

2x2 − 3x+ 2

x− 7√
x

2x + 5

x− 2

x+ 1

log2(x)

Also recall that any (with a key exception) divided by is equal to . You
should be familiar with using this property to .

Examples
9

6
=

3 · ��3
2 · ��3

=
3

2

50

60
=

5 ·��10
6 ·��10

=
5

6

We can use the same property to .

Example 1 Simplify (x+ 2)(x− 5)

x− 5

(x+ 2)�����(x− 5)

����x− 5
= x+ 2

However, if the value being divided by itself is , then the expression cannot be
like this. Our example has this issue when . If this is the case, the original expression
and the simplified version are not .

When x = 5, (x+ 2)(x− 5)

x− 5
is undefined, but x+ 2 = 7.

The solution to this problem is to from our simplification. We call this an
, and we write the result as

(x+ 2)(x− 5)

x− 5
= x+ 2, x ̸= 5
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Example 2 Simplify:

12x3

3x
=

4 · ��3 · x2 ·��x
��3 ·��x

= 4x2 x ̸= 0

Example 3 Simplify:
(x− 5)(x+ 3)(x− 6)

(x− 6)(x+ 3)(x+ 5)
=

x− 5

x+ 5

x ̸= 6,−3
Example 4 Simplify:

4− x2

x2 + x− 6
=

(2 + x)(2− x)

(x− 2)(x+ 3)

=
−(2 + x)�����(x− 2)

�����(x− 2)(x+ 3)

= −x+ 2

x+ 3
, x ̸= 2

Example 5 Simplify:

x3 + 125

x3 + 15x2 + 75x+ 125

=
�����(x+ 5)(x2 − 5x+ 25)

(x+ 5)�32

=
x2 − 5x+ 25

(x+ 5)2

An Error to Avoid

Remember that only can be eliminated by dividing, not . With an expression
like the one in example 4, a common error is to do the following.

Don’t do this: ��x2 + 5x+ 6

��x2 + x− 6
=

5x+ 6

x− 6
Seriously, DO NOT DO THIS!

This is because the operation of division is , not or

.

Multiplying and Dividing Rational Expressions

Recall that fractions can be by multiplying the and multiplying

the .

Example
3

5
· 11
6

=
3 · 11
5 · 6

=
33

30
=

11

10

Also, recall that by a fraction is the same as multiplying by its .

Example
4

7
÷ 8

9
=

4

7
· 9
8
=

36

56
=

9

14

Note that in these examples, some simplifying could have been done at the start.

3

5
· 11
6

=
1

5
· 11
2

=
11

10

4

7
÷ 8

9
=

4

7
· 9
8
=

1

7
· 9
2
=

9

14
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The same methods can be used to and rational expressions. It is always a

good idea to and whenever possible.

Example 6 Simplify:

x2 − 2x− 8

x+ 3
· x+ 3

x2 + 4x− 32
=

�����(x− 4)(x+ 2)

����x+ 3
· ����x+ 3

�����(x− 4)(x+ 8)

=
x+ 2

x+ 8
x ̸= 4,−3

Example 7 Simplify:

x2 + 12x+ 35

3x2 + x− 10
· x

2 + 9x+ 14

x+ 5
=

(x+ 7)�����(x+ 5)

(3x− 5)�����(x+ 2)
· (x+ 7)�����(x+ 2)

����x+ 5

=
(x+ 7)2

3x− 5
x ̸= −5,−2

Example 8 Simplify:

x2 + 7x− 30

x− 4
÷ (x2 + 6x− 40) =

(x− 3)(x+ 10)

x− 4
÷ [(x− 4)(x+ 10)]

=
(x− 3)������(x+ 10)

x− 4
· 1

(x− 4)������(x+ 10)

=
x− 3

x− 4
· 1

x− 4

=
x− 3

(x− 4)2
x ̸= −10

Example 9 Simplify:

x2 + 7x+ 10

x2 − x− 6
÷ x2 + 6x+ 5

x2 + x− 12
=

(x+ 2)(x+ 5)

(x+ 2)(x− 3)
÷ (x+ 5)(x+ 1)

(x− 3)(x+ 4)

=
�����(x+ 2)�����(x+ 5)

�����(x+ 2)�����(x− 3)
· �

����(x− 3)(x+ 4)

�����(x+ 5)(x+ 1)

=
x+ 4

x+ 1
x ̸= −5,−4,−2, 3

In the last example, there’s an extra at −4. The factor is not
eliminated, but it is originally in a . If x = −4, the original expression is

.
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6.2 Adding and Subtracting Rational Expressions
Recall that can be or if they have the same .

Examples

2

5
+

7

10
=

4

10
+

7

10
=

11

10

3

4
− 1

6
=

9

12
− 2

12
=

7

12

Similarly, expressions can be or if they have the same
.

Example 1 Simplify:

x2 + 8x

x2 + 7x+ 12
− 10x+ 24

x2 + 7x+ 12
=

x2 − 2x− 24

x2 + 7x+ 12

=
(x− 6)�����(x+ 4)

�����(x+ 4)(x+ 3)

=
x− 6

x+ 3
x ̸= −4

Example 2 Simplify:

x− 12

x− 3
+

4x+ 15

x2 − 3x
=

x(x− 12)

x(x− 3)
+

4x+ 15

x2 − 3x

=
x2 − 12x

x2 − 3x
+

4x+ 15

x2 − 3x

=
x2 − 8x+ 15

x2 − 3x

=
�����(x− 3)(x− 5)

x�����(x− 3)

=
x− 5

x
x ̸= 3

Finding the Lowest CommonMultiple

The of two (or more) expressions is the expression

which is a of each given expression.

To find the , find the simpliest for each expression so that each has the

same , which is the .
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Example 3 Find the lowest common multiple
of 5x, 10x2y and 15y3.

5x · 6xy3

10x2y · 3y2

15y3 · 2x2

LCM = 30x2y3

Example 4 Find the lowest common multiple
of (x− 6)2 and (x− 6)(x+ 8).

(x− 6)2 · (x+ 8)

(x− 6)(x+ 8) · (x− 6)

LCM = (x− 6)2(x+ 8)

Example 5 Find the lowest common multiple
of x(x− 2) and (x− 2)(x+ 5).

x(x− 2) · (x+ 5)

(x− 2)(x+ 5) ·x
LCM = x(x− 2)(x+ 5)

Example 6 Find the lowest common multiple
of x2 + 9x+ 20 and x2 − 2x− 35.

(x+ 4)(x+ 5) · (x− 7)

(x− 7)(x+ 5) · (x+ 4)

LCM = (x+ 4)(x+ 5)(x− 7)

Adding or Subtracting with Different Denominators

If the are different, we look to find the of the ,
and make that the .

It is best practice to and the resulting , in case the
expression can simplify further.

Example 7 Simplify:

x

x+ 1
− 4

x+ 4
=

x(x+ 4)

(x+ 1)(x+ 4)
− 4(x+ 1)

(x+ 7)(x+ 1)

=
x2 + 4x

(x+ 1)(x+ 4)
− 4x+ 4

(x+ 4)(x+ 1)

=
x2 − 4

(x+ 1)(x+ 4)

=
(x+ 2)(x− 2)

(x+ 1)(x+ 4)
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Example 8 Simplify:
5

x2 + 9x+ 14
+

x

x2 + 6x+ 8
=

5

(x+ 2)(x+ 7)
+

x

(x+ 2)(x+ 4)

=
5(x+ 4)

(x+ 2)(x+ 7)(x+ 4)
+

x(x+ 7)

(x+ 2)(x+ 4)(x+ 7)

=
5x+ 20

(x+ 2)(x+ 7)(x+ 4)
+

x2 + 7x

(x+ 2)(x+ 4)(x+ 7)

=
x2 + 12x+ 20

(x+ 2)(x+ 7)(x+ 4)

=
�����(x+ 2)(x+ 10)

�����(x+ 2)(x+ 7)(x+ 4)

=
x+ 10

(x+ 7)(x+ 4)
x ̸= −2

Example 9 Simplify:
x

x2 − x− 6
− 9

x2 + 9x− 36
=

x

(x− 3)(x+ 2)
− 9

(x+ 12)(x− 3)

=
x(x+ 12)

(x− 3)(x+ 2)(x+ 12)
− 9(x+ 2)

(x+ 12)(x− 3)(x+ 2)

=
x2 + 12x

(x− 3)(x+ 2)(x+ 12)
− 9x+ 18

(x+ 12)(x− 3)(x+ 2)

=
x2 + 3x− 18

(x− 3)(x+ 2)(x+ 12)

=
�����(x− 3)(x+ 6)

�����(x− 3)(x+ 2)(x+ 12)

=
x+ 6

(x+ 2)(x+ 12)
x ̸= 3
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6.3 Complex Fractions
We’ve already learned that a rational expression is a fraction with polynomials for the numerator
and denominator.

If the numerator and denominator of a fraction are themselves, the

fraction is a . These expressions are complicated, as their name suggests1,

so it is desirable to them as much as possible.

If the numerator and denominator each contain only a , then the complex

fraction is simply just of two rational expressions, written in a different form. This
means they can be treated in the exact same way, by by the of

the .

Example 1 Simplify:
x+3
x
x

x+1

=
x+ 3

x
· x+ 1

x

=
(x+ 3)(x+ 1)

x2

If a complex fraction contains a or of rational expressions, then there
are a couple of options to them.

Method 1: Multiply by Denominators

In this method, we eliminate the of the smaller fractions by

everything by their .

Example 2 Simplify:
1
x +

2
x+5

x
x+5

=
1
x · x+ 2

x+5 · x
x

x+5 · x
=

1 + 2x
x+5

x2

x+5

=
1 · (x+ 5) + 2x

x+5 · (x+ 5)
x2

x+5 · (x+ 5)
=

x+ 5 + 2x

x2

=
3x+ 5

x2
x ̸= −5

1The name “complex fractions” does not imply they are related to complex numbers. If you want a less confusing
name, you could call them “nested fractions.”
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Method 2: Adding and Subtracting First

In this method, we simplify the and/or the as we would for
any expression with addition or subtraction. Then treat the result as .

Example 3 Simplify:
1
x +

2
x+5

x
x+5

=

x+5
x(x+5) +

2x
(x+5)x

x
x+5

=

3x+5
x(x+5)

x
x+5

=
3x+ 5

x�����(x+ 5)
· �

���x+ 5

x

=
3x+ 5

x2
x ̸= −5

Example 4 Simplify:

Using Method 1:
x−7
x2−9 +

2
x+3

5
x−3 −

x+6
x2−9

=

x−7
(x+3)(x−3) +

2
x+3

5
x−3 −

x+6
(x+3)(x−3)

=

x−7
(x+3)(x−3) · (x+ 3) + 2

x+3 · (x+ 3)
5

x−3 · (x+ 3)− x+6
(x+3)(x−3) · (x+ 3)

=
x−7
x−3 + 2

5x+15
x−3 −

x+6
x−3

=
x−7
x−3 · (x− 3) + 2 · (x− 3)

5x+15
x−3 · (x− 3)− x+6

x−3 · (x− 3)
=

x− 7 + 2x− 6

5x+ 15− x− 6

=
3x− 13

4x+ 9
x ̸= −3, 3

Using Method 2:
x−7
x2−9 +

2
x+3

5
x−3 −

x+6
x2−9

=

x−7
(x+3)(x−3) +

2
x+3

5
x−3 −

x+6
(x+3)(x−3)

=

x−7
(x+3)(x−3) +

2(x−3)
(x+3)(x−3)

5(x+3)
(x−3)(x+3) −

x+6
(x+3)(x−3)

=

x−7
(x+3)(x−3) +

2x−6
(x+3)(x−3)

5x+15
(x−3)(x+3) −

x+6
(x+3)(x−3)

=

3x−13
(x+3)(x−3)

4x+9
(x+3)(x−3)

=
3x− 13

4x+ 9
x ̸= −3, 3
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6.4 Rational Equations

An equation which consists of is called a .

As with any equation, means finding the values for the which make the

equation .

To simplify the equation, we can eliminate the by multiplying the entire
equation by their . This reduces the equation to a equation, which is

frequently a equation. We can then use our typical methods to finish solving.

Example 1 Solve x+ 2

x− 2
− x+ 9

x
= 1

x+ 2

x− 2
· (x− 2)− x+ 9

x
· (x− 2) = 1 · (x− 2)

x+ 2− x2 + 7x− 18

x
= x− 2

(x+ 2) ·x− x2 + 7x− 18

x
·x = (x− 2) ·x

x2 + 2x− x2 − 7x+ 18 = x2 − 2x

−x2 − 3x+ 18 = 0

x2 + 3x− 18 = 0

(x+ 6)(x− 3) = 0

x = −6 or x = 3

We can check that both solutions are by them into the original equation.

If x = −6, then LHS = (−6)+2
(−6)−2 −

(−6)+9
(−6) = −4

−8 −
3
−6 = 1, RHS = 1.

If x = 3, then LHS = (3)+2
(3)−2 −

(3)+9
(3) = 5

1 −
12
3 = 1, RHS = 1.

In this case, both of the solutions the equation. This is not always true, which is why
we need to check the solutions.

106 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 6.4 Rational Equations

For rational equations, it is possible to obtain solutions.
solutions, which are not actually solutions, appear when the equation is solved, but are

with the original equation.

Example 2 Solve x− 3

x+ 3
+

2

x− 2
=

5x

x2 + x− 6

x− 3

x+ 3
· (x+ 3) +

2

x− 2
· (x+ 3) =

5x

(x+ 3)(x− 2)
· (x+ 3)

x− 3 +
2x+ 6

x− 2
=

5x

x− 2

(x− 3) · (x− 2) +
2x+ 6

x− 2
· (x− 2) =

5x

x− 2
· (x− 2)

x2 − 5x+ 6 + 2x+ 6 = 5x

x2 − 8x+ 12 = 0

(x− 2)(x− 6) = 0

����x = 2 or x = 6

Checking the solutions:

If x = 2, then LHS = (2)−3
(2)+3 +

2
(2)−2 is undefined, RHS = 5(2)

(2)2+(2)−6 is undefined.

If x = 6, then LHS = (6)−3
(6)+3 +

2
(6)−2 =

1
3 +

1
2 =

5
6 , RHS = 5(6)

(6)2+(6)−6 =
5
6 .

=⇒ x = 2 is an extraneous solution, x = 6 is the only solution.

Because extraneous solutions can arise from rational equations, you must
your solutions with the original equation.
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6.5 Simple Rational Functions

The simplest non-trivial rational function is the .

parent function

f(x) = x−1 =
1

x

domain

R\ {0}

range

R\ {0}

relation type

onetoone
horizontal asymptote

y = 0

vertical asymptote

x = 0

shape

hyperbola

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

An is a line which a function’s curve continues to get to, without ever

it.

This function has a at , because as x

towards +∞ or towards −∞, f(x) continues to get to zero.

As x→ ±∞, f(x)→ 0

The function also has a at , because as x gets

to zero, f(x) continues to +∞ or to −∞.

As x→ 0, f(x)→ ±∞
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Transformations of the Reciprocal Function

By applying to y =
1

x
, we arrive at the

f (x) =
A

x− h
+ k

A sketch of this type of function should include:

shape of curve hyperbola with enough points to show stretch/compression
x-intercept y = 0, find x by solving f(x) = 0, exists if k ̸= 0

y-intercept x = 0, find y by evaluating y = f(0), exists if h ̸= 0

vertical asymptote x = h, as f(h) is undefined
horizontal asymptote y = k, as f(x) = k has no solution

endpoints evaluate the function at the bounds of the domain
The points one unit left and right of the vertical asymptote are useful for guiding the overall shape
of the graph.

Example 1 Sketch a graph of f(x) = −1
x− 3

− 5, and state its domain and range in three forms.

Orientation: Inverted
Asymptotes: x = 3 y = −5

x-intercept: (145 , 0)

−1
x−3 − 5 = 0

−1
x−3 = 5

x− 3 = −1
5

x = 3− 1
5 =

14
5

y-intercept: (0,−14
3 ) as f(0) = −14

3

Other points: f(2) = −4 f(4) = −6

x
y

Domain: Range:
R\ {3} R\ {−5}

= (−∞, 3) ∪ (3,∞) = (−∞,−5) ∪ (−5,∞)

= {x : x ̸= 3} = {y : y ̸= −5}
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Example 2 Find the function g represented by the following graph.

x = −1

y = −3

x

y asymptotes: x = −1 and y = −3

=⇒ h = −1, k = −3

g(x) = A
x+1 − 3

passes through origin: g(0) = 0

A
1 − 3 = 0 =⇒ A = 3

g(x) =
3

x+ 1
− 3

Inverses of Simple Rational Functions

Functions of the form y = A
x−h + k are , which means they each have an

. It turns out that the have the
. Finding follows the same process we used in section 2.2.

Example 3 Find the inverse of f(x) = 1

x− 2
+7. State the domain and range of f , and the domain

and range of f−1.

y =
1

x− 2
+ 7

swap x↔ y : x =
1

y − 2
+ 7

x− 7 =
1

y − 2

(x− 7)(y − 2) = 1

y − 2 =
1

x− 7

y =
1

x− 7
+ 2

f−1(x) =
1

x− 7
+ 2

domain of f = R\ {2}

range of f = R\ {7}

domain of f−1 = R\ {7}

range of f−1 = R\ {2}
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Linear Rational Functions

A rational function whose numerator and denominator are both has a
for its graph, just like y = A

x−h + k, though determining its characteristics is more difficult. To

handle these functions, we can use (section 5.4) to convert their form.

Example 4 Write f(x) =
3x+ 8

x+ 2
in the form y = A

x−h + k, and sketch its graph.

You can use the known values f(0) = 4 and f(−8
3) = 0.

f(x) =
3x+ 8

x+ 2
= 3 +

2

x+ 2

=
2

x+ 2
+ 3

x

y

Example 5 Write g(x) =
−2

x− 6
+ 7 in the form y =

ax+ b

cx+ d
.

g(x) =
−2

x− 6
+ 7

=
−2

x− 6
+

7(x− 6)

x− 6

=
−2 + 7x− 42

x− 6

=
7x− 44

x− 6
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6.6 Functions with Quadratic Denominators
Transformations of x-2

parent function

f(x) = x−2 =
1

x2

domain

R\ {0}

range

(0,∞)

relation type

manytoone
horizontal asymptote

y = 0

vertical asymptote

x = 0

shape

truncus

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

This parent function is similar to the function. It has the same , and

its graph has the same . However, because x is , the output values

are all , which changes the .

Note that the shape of a curve is not a , but is a slightly different shape called a

.

By applying , we arrive at the

f (x) =
A

(x− h)2
+ k
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A sketch of this type of function should include:

shape of curve truncus with enough points to show stretch/compression
x-intercepts y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0), exists if h ̸= 0

vertical asymptote x = h, as f(h) is undefined
horizontal asymptote y = k, as f(x) = k has no solution

endpoints evaluate the function at the bounds of the domain

Example 1 Sketch a graph of f(x) = 9

(x− 7)2
− 4.

Asymptotes: x = 7 y = −4

x-intercept: (112 , 0) and (172 , 0)

9
(x−7)2 − 4 = 0

9
(x−7)2 = 4

(x− 7)2 = 9
4

x− 7 = ±3
2

x = 7± 3
2

y-intercept: (0,−187
49 )

as f(0) = −187
49 ≈ −3.816

Other points: f(6) = 5 f(8) = 5

x

y

Example 2 Find the rule for a rational function f with an implied domain of (−∞,−2)∪ (−2,∞)
and a range of (−∞, 8). The function does not represent a stretch or compression applied to the
parent function.

No stretch or compression =⇒ A = ±1.

f(x) < 8 =⇒ graph is inverted =⇒ A is negative =⇒ A = −1

Asymptotes are x = −2 and y = 8 =⇒ h = −2 and k = 8

f(x) =
−1

(x+ 2)2
+ 8
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Reciprocals of Quadratic Functions

Functions of the form f(x) =
1

q(x)
, where q(x) is a function, can be graphed by

examining the behavior of q(x).

If function q(x)… …then its f(x) =
1

q(x)
…

has a zero at x has a vertical asymptote at x
has a local minimum (h, k) has a local maximum (h, 1k)

has a local maximum (h, k) has a local minimum (h, 1k)

approaches ±∞ approaches zero (asymptote y = 0)
is positive is positive
is negative is negative
equals ±1 equals ±1

Example 3 Draw the graph of f(x) = 1

x2 − 8x+ 12
. The graph of q(x) = x2 − 8x+ 12 is already

shown.

Asymptotes: y = 0, x = 2, x = 6

Vertical asymptotes when q(x) = 0:
x2 − 8x+ 12 = 0

(x− 2)(x− 6) = 0

x = 2 or x = 6

y-intercept: (0, 1
12) as f(0) = 1

12

Vertex: (4,−1
4)

q(x) has vertex at (4,−4)
because 2+6

2 = 4,
q(4) = (4)2 − 8(4) + 12 = −4

Points where f(x) = q(x) = ±1 are marked.

1 2 3 4 5 6 7 8

−4

−3

−2

−1

1

2

3

4 q(x)

x

y

Note that you won’t typically be given the parabola for the quadratic in practice questions. It’s
still a good idea to draw it first before attempting to draw its reciprocal.
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Example 4 Sketch a graph of f(x) = 2

x2 − 4x+ 5
.

Rewrite f(x) in the form 1

q(x)
: f(x) =

1
1
2x

2 − 2x+ 5
2

Properties of q(x): Properties of f(x):

Zeros: none Vertical Asymptotes: none

y-intercept:
(
0, 52

)
y-intercept:

(
5
2

)−1
= 2

5 =⇒
(
0, 25

)
Vertex:

(
2, 12

)
Vertex:

(
1
2

)−1
= 2 =⇒ (2, 2)

Equals ±1: (1, 1) and (3, 1) Equals ±1: (1, 1) and (3, 1)

Horizontal Asymptote: y = 0

x

y
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7.1 Radical Expression Concepts
Recall that the of x is the value y such that yn = x, which we write as

y = n
√
x

• The symbol is the symbol.

• The small number written over the radical is called the .
(Don’t mix this up with a coefficient written in front of the radical.)

• The value under the is called the .

The 2nd root is called the , and is usually written without the .

The 3rd root is called the .

Example 1

√
81 = 9 because 92 = 81

3
√
125 = 5 because 53 = 125

5
√
32 = 2 because 25 = 32

Simplifying Radicals

It is conventional to write radical expressions with the smallest possible value in the .
This is done by identifying a which has a nth root.

Example 2 Simplify the following.

√
72 =

√
36
√
2

= 6
√
2

3
√
108 =

3
√
27

3
√
4

= 3
3
√
4

6
√
128 =

6
√
64

6
√
2

= 2
6
√
2

The same principle can be used when there are in the .

Example 3 Simplify the following.

√
75x7 =

√
25x6
√
3x

= 5x3
√
3x

3
√
48x5 =

3
√
8x3

3
√
6x2

= 2x
3
√
6x2

4
√

81xy5 = 4
√

81y4 4
√
xy

= 3y 4
√
xy
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Adding and Subtracting Radicals

Radical terms with the same and can be added or subtracted by adding
or subtracting their , just as are simplified.

Some radicals may need to be first.

Example 4 Simplify the following.

9
√
6− 7

√
3 +
√
6 + 4

√
3 = 10

√
6− 3

√
3

Example 5 Simplify the following.

2
√
45 + 3

√
50− 6

√
8 + 4

√
20 = 2

√
9
√
5 + 3

√
25
√
2− 6

√
4
√
2 + 4

√
4
√
5

= 2 · 3
√
5 + 3 · 5

√
2− 6 · 2

√
2 + 4 · 2

√
5

= 6
√
5 + 15

√
2− 12

√
2 + 8

√
5

= 14
√
5 + 3

√
2

Multiplying Radicals

Radicals with the same index can be multiplied by multiplying their . If each radical
has a , these are multiplied together.

Example 6 Simplify the following.

3
√
10 · 7

√
2 = 21

√
20

= 21 · 2
√
5

= 42
√
5

2
√
7 · 5
√
14 = 10

√
98

= 10 · 7
√
2

= 70
√
2

If binomial expressions are being multiplied, then we can use the .

Example 7 Simplify the following.

3
√
2(
√
5 + 4

√
2) = 3

√
10 + 12

√
4

= 3
√
10 + 24

Example 8 Simplify the following.

(2 +
√
5)(7− 6

√
5) = 14− 12

√
5 + 7

√
5− 6

√
25

= 14− 12
√
5 + 7

√
5− 30

= −16− 5
√
5
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Dividing Radicals

When dividing radicals, it is considered good practice to ensure the is ,
in a process called .

If the has term, we can multiply by an appropriate radical to make it
. In the case of a square root, we can use the .

Example 9 Rationalize the denominators.

3
√
7

5
√
3
=

3
√
7

5
√
3
·
√
3√
3

=
3
√
21

15

=

√
21

5

4 3
√
6

3 3
√
2
=

4 3
√
6

3 3
√
2
·

3
√
4

3
√
4

=
4 3
√
24

3 3
√
8

=
8 3
√
3

6

=
4 3
√
3

3

If the has terms involving square roots (but not higher roots), we can
make it by multiplying by its , following the same process we used for
dividing complex numbers in section 4.1.

Example 10 Rationalize the denominator.

6
√
2 + 7

√
3

3
√
2 + 5

√
3
=

6
√
2 + 7

√
3

3
√
2 + 5

√
3
· 3
√
2− 5

√
3

3
√
2− 5

√
3

=
18
√
4 + 21

√
6− 30

√
6− 35

√
9

9
√
4 + 15

√
6− 15

√
6− 25

√
9

=
−69− 9

√
6

−57

=
69 + 9

√
6

57
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7.2 Rational Exponents

Review of Exponents

An is used to indicate repeated of a number called the .

an = a · a · a . . . a︸ ︷︷ ︸
n times

where n is the and a is the .

Exponent Product Rule

am · an = am+n

Exponent Quotient Rule

am

an
= am−n

Exponent Power Rule

(am)n = amn

Negative Exponent Rule

a−n =
1

an

Base Product Rule

(ab)n = anbn

Base Quotient Rule(a
b

)n

=
an

bn

Special Value Zero

a0 = 1 (a ̸= 0)

Special Value One

a1 = a
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Rational Exponents

When an exponent is a , it is known as a . We can use the

to help evaluate them.

Example 1 Evaluate the following.

36
1/2 =

(
62
)1/2

= 62·
1/2

= 61

= 6

81
3/4 =

(
34
)3/4

= 34·
3/4

= 33

= 27

8
7/3 =

(
23
)7/3

= 23·
7/3

= 27

= 128

Let’s take a closer look at the last example and consider what 87/3 actually means. Recall that an
indicates how many times the is multiplied by itself. From the diagram

it’s simple to see that, for instance, multiplying by 8 times results in 83 = 512.

1 8 64 512

·8 ·8 ·8

2 4 16 32 128 256

But what does it mean to multiply 8 seven-thirds times, since it is not an ? Consider

that multiplying by 8 once is the same as multiplying by three times. It follows that
multiplying by 8 “one-third times” is equivalent to multiplying by .

Finally, this means that multiplying by 8 seven-thirds times is the same as multiplying by
times, and that 87/3 = 128.

Roots and Exponents
Consider the following:

√
36 =

√
62

= 6

(
4
√
81
)3

=
(

4
√
34
)3

= 33

= 27

(
3
√
8
)7

=
(

3
√
23
)7

= 27

= 128

Notice that we’re performing the as the example above, with the
of the root taking the place of the of the exponent. This is because

radicals and rational exponents are .
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Theorem: Roots and Rational Exponents

n
√
x = x

1/n n
√
xm =

(
n
√
x
)m

= x
m/n

Proof
Let y = n

√
x

=⇒ x = yn definition of the nth root
x

1/n = (yn)
1/n

= yn·
1/n exponent power rule

= y

=⇒ n
√
x = x

1/n

n
√
xm = (xm)

1/n = x
m/n(

n
√
x
)m

=
(
x

1/n
)m

= x
m/n �

Example 2 Write the following in exponent form.

5
√
11 = 11

1/5
√
69 = 6

9/2 (
4
√
21)13 = 21

13/4

Example 3 Write the following in radical form.

7
1/6 =

6
√
7 31

5/3 =
3
√
315 10

11/2 =
√
1011

Example 4 Evaluate the following.

25
1/2 =

√
25

= 5

32
3/5 = (

5
√
32)3

= 23

= 8

343
4/3 = (

3
√
343)4

= 74

= 2401

Example 5 Simplify the following.(
4
√
x
)12

= x
12/4

= x3

6
√
x3 = x

3/6

= x
1/2

=
√
x

12
√
16 =

(
24
)1/12

= 2
4/12

= 2
1/3

=
3
√
2

© 2020 Shaun Carter v. 0.3 123



Chapter 7 Radicals and Rational Exponents Algebra 2 Notes

7.3 Square Root Equations
Recall that to solve rational equations, we converted them into polynomial equations, which we
then solved using the usual methods. For equations with we can take a similar
approach.

Like rational equations, equations with can have ,

so each solution needs to be checked against the .

Example 1 Solve x =
√
7x+ 15− 1.

Step 1: Rearrange the equation to isolate
the .

x =
√
7x+ 15− 1

x+ 1 =
√
7x+ 15

Step 2: Eliminate the
by both sides.

(x+ 1)2 = (
√
7x+ 15)2

x2 + 2x+ 1 = 7x+ 15

Step 3: Solve the resulting equation.
x2 − 5x− 14 = 0

(x− 7)(x+ 2) = 0

x = 7 or x = −2

Step 4: Check for
solutions.

If x = 7 : LHS = 7

RHS =
√
7(7) + 15− 1

=
√
64− 1

= 8− 1

= 7 (valid)
If x = −2 : LHS = −2

RHS =
√

7(−2) + 15− 1

=
√
1− 1

= 1− 1

= 0 (extraneous)

Step 5: State the solutions. =⇒ x = 7
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Equations with square roots are more challenging to solve, and require

more than once, as only one root can by at a time. Care is needed to apply the
rule appropriately.

Example 2 Solve
√
x+ 4 + 3 =

√
7x+ 1.
√
x+ 4 + 3 =

√
7x+ 1(√

x+ 4 + 3
)2

=
(√

7x+ 1
)2

(
√
x+ 4)2 + 2 ·

√
x+ 4 · 3 + 32 = 7x+ 1

x+ 4 + 6
√
x+ 4 + 9 = 7x+ 1

6
√
x+ 4 = 6x− 12
√
x+ 4 = x− 2(√

x+ 4
)2

= (x− 2)2

x+ 4 = x2 − 4x+ 4

x2 − 5x = 0

x(x− 5) = 0

x = 0 or x = 5

If x = 0 : LHS =
√
4 + 3 = 5

RHS =
√
1 = 1 (extraneous)

If x = 5 : LHS =
√
5 + 4 + 3 = 6

RHS =
√

7(5) + 1 = 6 (valid)
=⇒ x = 5
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7.4 Square Root Functions

Functions which contain a can be called . For this class, we
will consider and functions.1

parent function

f(x) =
√
x = x

1/2

domain

[0,∞)

range

[0,∞)

relation type

onetoone
x-intercept

(0, 0)

y-intercept

(0, 0)

endpoint

(0, 0)

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

As the inverse of functions, square root functions have for their

curves, though facing a different direction. Half of the is missing; if the bottom half

was present, it would not be a .

Because the square root is for numbers, all the real

numbers are excluded from the of the parent function. We need to make

sure that all square roots have only numbers or under them.

1We also only consider real-valued functions in this class. So, even though we know that
√
−1 = i, for instance,

we’ll treat is as undefined in this section.
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Example 1 Find the domain and range of
f(x) = −2

√
x+ 4 + 6.

x+ 4 ≥ 0

x ≥ −4
domain = [−4,∞)

√
x+ 4 ≥ 0

−2
√
x+ 4 ≤ 0

f(x) = −2
√
x+ 4 + 6 ≤ 6

range = (−∞, 6]

Example 2 Find the domain and range of
g(x) =

√
−6(x− 2) + 5.

−6(x− 2) ≥ 0

x− 2 ≤ 0

x ≤ 2

domain = (−∞, 2]√
−6(x− 2) ≥ 0

g(x) =
√
−6(x− 2) + 5 ≥ 5

range = [5,∞)

By applying to the parent function, we get the of the

square root function:

f (x) = A
√
n(x− h) + k

Recall from section 1.4 that n represents

• a reflection across the y-axis if

• a stretch from the y-axis by a factor of 1

|n|
if

• a compression toward the y-axis by a factor of |n| if

For our previous parent functions, their symmetry meant that all reflections could be represented
with only A. This function has no symmetry, so n is needed as well.

A sketch of a square root function should include:

shape of curve "half" parabola with enough points to show stretch/compression
x-intercept y = 0, find x by solving f(x) = 0, may not exist
y-intercept x = 0, find y by evaluating y = f(0), may not exist

endpoint
(h, k), using translation of parent function to identify
may be different with restricted domain
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Example 3 Sketch a graph of f(x) = −2
√
x+ 4 + 6.

x-intercept: (5, 0)
−2
√
x+ 4 + 6 = 0

−2
√
x+ 4 = −6
√
x+ 4 = 3

x+ 4 = 9

x = 5

y-intercept: (0, 2) as f(0) = −2
√
4 + 6 = 2

endpoint: (−4, 6)

x

y

Example 4 Sketch a graph of g(x) =
√
−6(x− 2)+5.

x-intercept: none√
−6(x− 2) + 5 = 0√
−6(x− 2) = −5

No solution as square root can't be negative.

y-intercept: (0, 2
√
3 + 5)

g(0) =
√
−6(−2) + 5 =

√
12 + 5

= 2
√
3 + 5 ≈ 8.464

endpoint: (2, 5)

x

y

Example 5 List the transformations required to transform f(x) = x1/2 to g(x) = (−2x+ 5)
1/2− 3.

To identify the transformations, we need to factor the inner part of g:

g(x) =
[
−2

(
x− 5

2

)]1/2 − 3

• Reflect across the yaxis.
• Compress towards the yaxis by a factor by a factor of 2.
• Shift 5

2 units right.
• Shift 3 units down.
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Example 6 Find the function f represented by the following graph.

(−1, 3)

−11
2

x

y endpoint: (−1, 3) =⇒ h = −1, k = 3

Graph is reflected across the xaxis.

=⇒ f(x) = −
√

n(x+ 1) + 3

f(−11
2
) = −

√
n(−11

2
+ 1) + 3

= 0√
−9
2
n = 3

−9
2
n = 9

n = −2

f(x) = −
√
−2(x+ 1) + 3

Example 7 The parent function f(x) =
√
x is compressed toward the x-axis by a factor of 5. What

horizontal transformation results in the same function?

Let g be the resulting function.

g(x) = 1
5

√
x

=
√

1
25

√
x

=
√

1
25x

which corresponds to a stretch from the yaxis by a factor of 25.
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7.5 Cube Root Functions

parent function

f(x) = 3
√
x = x

1/3

domain

R

range

R

relation type

onetoone
x-intercept

(0, 0)

y-intercept

(0, 0)

point of inflection2

(0, 0)

x

f(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5

Unlike the square root, the cube root can be evaluated for real numbers, which

simplifies finding the and for cube root functions, which are both

if there is no domain restriction.

As the inverse of the parent function, y = x3, the curve of the function
has the same shape, over the line y = x.

Using , we can write the general form for a cube root function

f (x) = A
3
√
x− h + k

2This point does fit the definition of inflection we’ve used, because the curve changes from concave up to concave
down here, but there are other ways to define inflection which would technically exclude this point. The distinction
doesn’t matter in this class, but does in Calculus. Alternatively, this could be called a vertical tangent point.
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Example 1 Sketch a graph of f(x) = −3 (x− 8)
1/3+6.

point of inflection: (8, 6)

x-intercept: (16, 0)
−3 (x− 8)

1/3 + 6 = 0

−3 (x− 8)
1/3 = −6

(x− 8)
1/3 = 2

x− 8 = 8

x = 16

y-intercept: (0, 12)

as f(0) = −3(−8)1/3 + 6 = 12

endpoints: none, as domain is R

x

y

Example 2 Find the function g represented by the following graph.

(−1, 2) 2.5

x

y Point of inflection: (−1, 2) =⇒ h = −1, k = 2

g(x) = A 3
√
x+ 1 + 2

g(0) = 5
2

A 3
√
1 + 2 = 5

2 =⇒ A+ 2 = 5
2 =⇒ A = 1

2

g(x) = 1
2

3
√
x+ 1 + 2
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7.6 Quadratics, Cubics and Roots as Inverses
Recall the following theorem:

Theorem

A function f has an f−1

if and only if f is a function.

A cubic function of the form f(x) = A(x− h)3 + k is , so it will always have an
. The will be a function.

A quadratic function is more challenging because it is
, so does not have an .

To get around this problem, we can restrict the of the
function.

The resulting will be a function.

Theorem

Suppose f is a function,
and that y = f(x) has a at (h, k).

If the domain of f is or ,
then f is .

domain = [h,∞)

domain = (−∞, h]

It is easiest to find the inverse of a quadratic functions in form.

Example 1 Consider the function f : [2,∞)→ R, where f(x) = (x− 2)2 − 4.

a) Show that the inverse function f−1 exists.

h = 2

Domain is [2,∞) =⇒ f is onetoone =⇒ f−1 exists.
b) Find the range of f , and hence, the domain of f−1.

y = f(x) is upright =⇒ k = −4 is a minimum.
range of f = domain of f−1 = [−4,∞)
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c) Find the rule for f−1.

y = (x− 2)2 − 4

Swap x and y:

(y − 2)2 − 4 = x

(y − 2)2 = x+ 4

y − 2 =
√
x+ 4

y =
√
x+ 4 + 2

f−1(x) =
√
x+ 4 + 2

d) Use the graph of y = f(x) shown to plot
y = f−1(x) on the same plane.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y = f(x)

x

y

Example 2 Find the inverse function of g(x) = −2
√
x− 5+3, and state the domain and range for

each of g and g−1.

y = −2
√
x− 5 + 3

swap x↔ y :

−2
√

y − 5 + 3 = x

−2
√

y − 5 = x− 3√
y − 5 = −1

2(x− 3)

y − 5 =
(
−1

2(x− 3)
)2

= 1
4(x− 3)2

y = 1
4(x− 3)2 + 5

g−1(x) = 1
4(x− 3)2 + 5

domain of g = [5,∞)

range of g = (−∞, 3]

domain of g−1 = (−∞, 3]

range of g−1 = [5,∞)
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Example 3 Find the inverse function of f(x) = [5(x+ 4)]
1/3 − 9.

y = [5(x+ 4)]
1/3 − 9

swap x↔ y : [5(y + 4)]
1/3 − 9 = x

[5(y + 4)]
1/3 = x+ 9

5(y + 4) = (x+ 9)3

y + 4 = 1
5(x+ 9)3

y = 1
5(x+ 9)3 − 4

f−1(x) = 1
5(x+ 9)3 − 4

Example 4 Find the inverse function of g(x) = −3
4(2x− 7)3 + 5.

y = −3
4(2x− 7)3 + 5

swap x↔ y : −3
4(2y − 7)3 + 5 = x

−3
4(2y − 7)3 = x− 5

(2y − 7)3 = −4
3(x− 5)

2y − 7 = 3

√
−4

3(x− 5)

2y = 3

√
−4

3(x− 5) + 7

y = 1
2

3

√
−4

3(x− 5) + 7
2

g−1(x) = 1
2

3

√
−4

3(x− 5) + 7
2

= 3

√
1
8

3

√
−4

3(x− 5) + 7
2

= − 3

√
1
6(x− 5) + 7

2
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8.1 Exponential Functions

An is a function of the form

f (x) = A · bx + k

where the , b, is a positive real number which is not 1. The simplest cases have A = 1
and k = 0, such as with the following two examples.

functions

f(x) = 2x

g(x) =
(
1
2

)x
domain

R

range

(0,∞)

relation type

onetoone
x-intercept

none
y-intercept

(0, 1)

horizontal asymptote

y = 0

x

f(x)

x

g(x)

−5

−5

−4

−4

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

4

4

5

5

For b > 1, including b = 2 above, the function shows , which means as
the function increases, the rate of increase is also increasing proportionally.

For 0 < b < 1, including b = 1
2 above, the function shows , which means

as the function decreases, the rate of decrease is also decreasing proportionally.
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A sketch of an exponential function should include:

shape of curve exponential curve showing growth or decay
x-intercept y = 0, find x by solving f(x) = 0, may not exist
y-intercept x = 0, find y by evaluating y = f(0)

asymptote Horizontal: y = k

endpoints evaluate the function at the bounds of the domain
It is a good idea to show an additional point, such as (1, f(1)), to show the rate of growth or decay.

Example 1 Sketch a graph of f(x) = 1
23

x − 9
2 .

x-intercept: (2, 0)
1
23

x − 9
2 = 0

1
23

x = 9
2

3x = 9

x = 2

y-intercept: (0,−4)

as f(0) = 1
2 −

9
2 = −4

asymptote: y = −9
2

endpoints: none, as domain is R

x

y

Example 2 Identify the function g represented in the graph below.

2

2

1.28

x

y asymptote: y = 0 =⇒ k = 0

y-intercept: g(0) = A · b0 = 2 =⇒ A = 2

point: g(2) = 2 · b2 = 1.28

b2 = 0.64 =⇒ b = 0.8

g(x) = 2(0.8)x
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Example 3 Sketch a graph of g(x) = 4

(
3
2x−1

)
+ 1.

g(x) = 4

(
3
2x−1

)
+ 1

=
(
4

3/2
)x

· 4−1 + 1

= 1
4 · 8

x + 1

x-intercept: none
1
4 · 8

x + 1 = 0 has no solution

y-intercept: (0, 54)

as g(0) = 1
4 + 1 = 5

4

asymptote: y = 1

endpoints: none, as domain is R

x

y

Example 4 Suppose f is an exponential function, whose graph y = f(x) passes through the points
(2, 2) and

(
5, 14

)
, and has an asymptote y = 0. Find the rule for f(x).

k = 0 =⇒ f(x) = Abx

f(2) = Ab2 = 2

f(5) = Ab5 =
1

4
Ab5

Ab2
=

1/4

2
b3 = 1

8

b = 1
2

A
(
1
2

)2
= 2

1
4A = 2

A = 8

f(x) = 8
(
1
2

)x
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8.2 Logarithms
Consider the equation 3x = 243, whose solution is the answer to the question

Which power of 3 is 243?
The diagram illustrates that the solution is x = 5.

1
·3 ·3 ·3 ·3 ·3 ·3

The mathematical operation which answers the question above is the . This particular
case is written

log3 243 = 5

which is read as “the 3 of 243.” In general,

x = an ⇐⇒ loga x = n

Example 1

log5 125 = 3 because 53 = 125

log2 256 = 8 because 28 = 256

log4 1
16 = 4 because 4−2 = 1

42
= 1

16

log7
√
7 = 1

2 because 7
1/2 =

√
7

Note that if the base is omitted, it is assumed to be . This is sometimes known as a
logarithm.

Example 2

log 10000 = 4 because 104 = 10000

log 0.001 = −3 because 10−3 = 0.001
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Example 3 Write the following equations in logarithmic form.

a = 3b

b = log3 a
s = tk

k = logt s
p = 10r

r = log p
Example 4 Write the following equations in exponential form.

u = log2 v

v = 2u
m = logn

n = 10m
w = logy z

z = yw

Logarithm Rules

Recall that we reviewed the in section 7.2. Some of those rules can be

rewritten as equivalent .

Exponent Product Rule

am · an = am+n

Logarithm Product Rule

loga(x · y) = loga x+ loga y

Exponent Quotient Rule

am

an
= am−n

LogarithmQuotient Rule

loga
(
x

y

)
= loga x− loga y

Exponent Power Rule

(am)n = amn

Logarithm Power Rule

loga (xn) = n · loga x

Negative Exponent Rule

a−n =
1

an

Reciprocal Logarithm Rule

loga
(
1

x

)
= − loga x

Exponent Special Values

a0 = 1 a1 = a

Logarithm Special Values

loga 1 = 0 loga a = 1
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Example 5 Simplify the following without using a calculator.

2 log6 3 + log6 4 = log6 32 + log6 4
= log6 9 + log6 4
= log6 36
= 2

log5 8− log5 1000 = log5 8
1000

= log5 1
125

= −3

The Change of Base Rule
Recall from section 7.2 that we used the following diagram to illustrate 87/3 = 128:

1 8 64 512

·8 ·8 ·8

2 4 16 32 128 256

We can state this in logarithmic form as log8 128 =
7

3

When we originally calculated this, it was difficult to think of as a power of . Instead,
we expressed both numbers using as the , which in logarithmic form are

log2 128 = 7 log2 8 = 3

Equivalently, we can write log8 128 =
log2 128
log2 8

This is an example of the following rule:

Theorem: Change of Base Rule

loga(x) =
logb(x)
logb(a)

Example 6 Use the change of base rule to simplify the following.

log27 81 =
log3 81
log3 27

= 4
3

log25
3
√
5 =

log5
3
√
5

log5 25

=
1/3

2
= 1

6
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8.3 Logarithmic Functions
A is a function of the form f (x) = logb [n (x− h)]
where the , b, is a positive real number which is not 1. The simplest cases have n = 1 and
h = 0, such as with the following two examples.

functions

f(x) = log2(x)

g(x) = log0.5(x)
domain

(0,∞)

range

R

relation type

onetoone
x-intercept

(0, 1)

y-intercept

none
vertical asymptote

x = 0

x

f(x)

x

g(x)

−5

−5

−4

−4

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

4

4

5

5

Example 1 Express f(x) = log5(x) + 2 in
the form stated above.

f(x) = log5(x) + 2

= log5(x) + log5(25)
= log5(25x)

Example 2 Express g(x) = 1
3 log2(x) in the

form stated above.

g(x) = 1
3 log2(x)

= log2 x
log2 8

= log8(x)
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A sketch of an logarithmic function should include:

shape of curve logarithmic curve, exponential curve reflected over y = x

x-intercept y = 0, find x by solving f(x) = 0

y-intercept x = 0, find y by evaluating y = f(0), may not exist
asymptote vertical: x = h

Example 3 Sketch a graph of f(x) = log2
[
1
3 (x− 4)

]
.

x-intercept: (7, 0)

log2
[
1
3 (x− 4)

]
= 0

1
3 (x− 4) = 1

x− 4 = 3 =⇒ x = 7

y-intercept: none
as f(0) = log2(−4

3) is undefined
asymptote: x = 4

other point: (10, 1)

log2
[
1
3 (x− 4)

]
= 1

1
3 (x− 4) = 2

x− 4 = 6 =⇒ x = 10

x

y

Example 4 Identify the function g represented in the graph below.

(8,−1)

2

x

y asymptote: x = 0 =⇒ g(x) = logb nx

x-intercept: g(2) = logb (n · 2) = 0

=⇒ 2n = 1 =⇒ n = 1
2

point: g(8) = logb 4 = −1

=⇒ b−1 = 4 =⇒ b = 1
4

g(x) = log0.25
(
1
2x
)
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Exponential and Logarithmic Functions as Inverses

The of an exponential function is a function with the same .

This means that the inverse of f(x) = ax is .

Example 5 Find the inverse function of f(x) = 15 · 3x + 2, and state the domain and range for
each of f and f−1.

y = 15 · 3x + 2

swap x↔ y :

15 · 3y + 2 = x

15 · 3y = x− 2

3y =
x− 2

15

y = log3
(
x−2
15

)
f−1(x) = log3

(
x−2
15

)

domain of f = R

range of f = (2,∞)

domain of f−1 = (2,∞)

range of f−1 = R

Example 6 Find the inverse function of g(x) = log [6 (x− 4)], and state the domain and range for
each of g and g−1.

y = log [6 (x− 4)]

swap x↔ y :

log [6 (y − 4)] = x

6 (y − 4) = 10x

y − 4 = 1
6 · 10

x

y = 1
6 · 10

x + 4

f−1(x) =
1

6
· 10x + 4

domain of g = (4,∞)

range of g = R

domain of g−1 = R

range of g−1 = (4,∞)

144 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes 8.4 Natural Exponents and Logarithms

8.4 Natural Exponents and Logarithms
The Base e
Observe the following graphs of y = 2x, y = 3x and y = 5x.

y = 2x

m = 0.6931

1

x

y

y = 3x

m = 1.0986

1

x

y

y = 5x

m = 1.6094

1

x

y

You should recall that changing the of the exponent does not change the ,

which is (0, 1) for each curve. However, changing the does change how steep the curve is
at this point. This is represented by the dashed line, which is the to the curve at the

y-intercept.1 Notice that the of these tangents are decimal values, which each turn out
to be irrational.

We might wonder if it’s possible for the slope of this tangent to have
an exact integer value, such as 1. As it happens, this occurs when the

is a particular constant, which we denote e,
and has the value

e = 2.71828182845904523536 . . .

y = ex

m = 1

1

x

y

The relationship between a function and the slopes of its tangents is the basis for much of calculus,
which makes the function f(x) = ex very important. e shows up in many other areas of math also,
as well as being used in science, engineering, finance and many other applications.

For Algebra 2, we need to know of the existence of e and that it is closely related to exponents and
logarithms. However, we don’t need to worry if we don’t yet understand why it is important or
where it comes from.

When exponents or logarithms have e as their , they are called . All exponential
and logarithmic functions can be written as transformations of exponents and logarithms,
so we can use these as .

The is important enough that it gets its own notation:

ln (x) = loge (x)

1Remember from Geometry that the tangent to a circle is a straight line which touches the circle at a single point?
Graphs of functions also have tangents, which have a very similar meaning.
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Natural Exponents

The parent function for natural exponents is , which leads to the general form

f(x) = Aenx + k

Instead of changing the to control the rate of exponential or ,

we can change the value of n. If n is , the function exhibits exponential .

If n is , the function exhibits exponential .

Example 1 Plot the points at x = 0, 1, 2 on each of the following graphs, and label them with
exact coordinates.

−5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

y = ex

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

y = e−x

x

y

Since ex and lnx are , we can use the result eln a = a to change the base of an
exponent to e:

ax =
(
eln a

)x
= eln(a)·x

Example 2 Express f(x) = 5 · 4x using e as
the base.

f(x) = 5 · 4x

= 5 ·
(
eln(4)

)x

= 5eln(4)x

Example 3 Express g(x) = 3 ·
(
1
8

)x as a
natural exponential function.

g(x) = 3 ·
(
1
8

)x
= 3 · 8−x

= 3 ·
(
eln(8)

)−x
= 3e− ln(8)x
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Example 4 Identify the function f represented in the graph below.

(4, 2.59)

6.5

x

y asymptote is y = 0 =⇒ f(x) = Aenx

f(0) = A = 6.5

f(4) = 6.5e4n = 2.59

e4n = 2.59
6.5 =⇒ 4n = ln

(
2.59
6.5

)
n = 1

4 ln
(
2.59
6.5

)
= −0.23

f(x) = 6.5e−0.23x

Natural Logarithms

The parent function for natural logarithms is
, which leads to the general

form

f(x) = A · ln [n (x− h)]

Instead of changing the to control the
and of the logarithmic

curve, we can change the value of A.

1 2 3 4 5 6 7 8 9 10

−5

−4

−3

−2

−1

1

2

3

4

5

(e−1,−1)

(1, 0)

(e, 1)

(e2, 2)

y = ln (x)

x

y

We already have the which we can use to change logarithms to
their natural form:

loga(x) =
lnx

ln a

Example 5 Express f(x) = log4 3x using
the natural logarithm.

f(x) = log4(3x)

=
1

ln 4
ln(3x)

Example 6 Express g(x) = log0.2 x using
the natural logarithm.

g(x) = log0.2 x

=
1

ln 0.2
lnx

= − 1

ln 5
lnx
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Example 7 Identify the function g represented in the graph below.

−0.78

−2

x = −3

x

y asymptote is x = −3

=⇒ g(x) = A ln [n (x+ 3)]

g(−2) = A ln [n (−2 + 3)] = 0

=⇒ ln (n) = 0

=⇒ n = e0 = 1

=⇒ g(x) = A ln (x+ 3)

g(0) = A ln 3 = −0.78

=⇒ A =
−0.78
ln 3

= −0.71

g(x) = −0.71 ln (x+ 3)

Example 8 Find the inverse function of f(x) = 20e−0.001x+5. State the domain and range of each
f and f−1.

y = 20e−0.01x + 5

swap x, y : x = 20e−0.01y + 5

20e−0.01y = x− 5

e−0.01y = 0.05 (x− 5)

−0.01y = ln [0.05 (x− 5)]

y = −100 ln [0.05 (x− 5)]

f−1(x) = −100 ln [0.05 (x− 5)]

domain of f = R, range of f = (5,∞)

domain of f−1 = (5,∞), range of f−1 = R
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8.5 Exponential and Logarithmic Equations

Method 1: Equating the Base

The simplest method to solve equations involving or is often to

write with the same . Then we can use the following theorem.

Theorem

Two exponential expressions with the same are

iff (if and only if) they have the same .

Example 1 Solve 812x+1 =
√
3.(

34
)2x+1

= 3
1/2

34(2x+1) = 3
1/2

4(2x+ 1) = 1
2

2x+ 1 = 1
8

2x = −7
8

x = − 7
16

Example 2 Solve 65x+3 = 364x+9.

65x+3 =
(
62
)4x+9

= 68x+18

5x+ 3 = 8x+ 18

−3x = 15

x = −5

This applies equally to , as they are the of . You’ll
need to check for extraneous solutions.

Example3 Solve log(4x−2)−log(x−5) = 1.

log
(
4x− 2

x− 5

)
= log 10

4x− 2

x− 5
= 10

4x− 2 = 10x− 50

−6x = −48
x = 8

Example 4 Solve 2 ln(x) = ln(2x+ 3).

ln(x2) = ln(2x+ 3)

x2 = 2x+ 3

x2 − 2x− 3 = 0

(x− 3)(x+ 1) = 0

x = 3 or x = −1
ln(−1) is undefined
=⇒ x = 3
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Method 2: Using Inverse Operations

Since exponents and logarithms are of each other, we can use them to solve equations
involving the other. The solutions obtained when using this method are often .

Example 5 Solve log3(x+ 9) = 2.

log3(x+ 9) = 2

x+ 9 = 32

= 8

x = −1

Example 6 Solve 3ex/4 + 4 = 10 exactly.

3e
x/4 + 4 = 10

3e
x/4 = 6

e
x/4 = 2
x
4 = ln 2

x = 4 ln 2

Example 7 Solve 42x−3 = 20

to 2 decimal places.

42x−3 = 20

2x− 3 = log4 20
2x = log4 20 + 3

x = 1
2 (log4 20 + 3)

≈ 2.58

Example 8 Solve 2 ln(x− 1) + 5 = 1

to 3 decimal places.

2 ln(x− 1) + 5 = 1

2 ln(x− 1) = −4
ln(x− 1) = −2

x− 1 = e−2

x = e−2 + 1

≈ 1.135

Method 3: Using a Substitution

Sometimes we can change an equation to a simplified form using a thoughtful .

Example 9 Solve 32x − 6 · 3x − 27 = 0.

(3x)2 − 6 · 3x − 27 = 0

Let a = 3x

a2 − 6a− 27 = 0

(a− 9)(a+ 3) = 0

a = 9 or a = −3
3x = 9 or ������

3x = −3
x = 2
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8.6 Exponential Regression
Recall that is the process of fitting a modeling function to a set of data in order
to approximate the relationship between variables.

uses an function for the modelling function.

This means choosing values for and so that fits the data as well
as possible.

Like linear and quadratic regression, performing involves calculating

the the , denoted by , which measures how well the
regression curve fits the data.

If your device or software offers “log mode” for this type of regression, this generally provides a
better fit. Some devices do this by default.2

Example 1 A research lab is investigating the population of a sample of bacteria. After leaving
the sample for 24 hours at a time, the number of bacteria is estimated and recorded. Let t be the
number of days after the beginning of the experiment.

t (days) 1 2 3 5 6 7

p 5.74× 105 1.85× 106 7.49× 106 7.43× 107 2.17× 108 8.79× 108

Use exponential regression to model bacteria population.

a = 175140, b = 3.34699, R2 = 0.999

p(t) = 175140(3.34699)t

The model is a very good fit for the data, as R2 is
close to 1.
Example 2 Predict the population at the beginning of the
experiment.

p(0) = 175140(3.34699)0 = 175140

Example 3 The researchers weren’t able to collect data on day
4. Estimate what the population would have been that day.

p(4) = 175140(3.34699)4 = 2.20× 107
2 4 6 8

2

4

6

8

10

t (days)

p (×108)

2How this works, and the reasons why performing exponential regression this way is preferable, are beyond the
scope of Algebra 2.
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9.1 Identifying Functions
Review of Parent Functions

f(x) = x f(x) = |x| f(x) = x2

f(x) = x3 f(x) = 1
x f(x) = 1

x2

f(x) =
√
x f(x) = 3

√
x f(x) = ex

f(x) = lnx

Recall that we can use these ,

together with , to construct
functions. By identifying these in a , we can

identify the corresponding .
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Example 1 Identify the function f represented in the graph below.

(1,−2)

1
0.704 x

y shape =⇒ cube root function

f(x) = A
3
√
x− h+ k

pt. of inflection =⇒ f(x) = A 3
√
x− 1− 2

f(0) = A 3
√
−1− 2 = −A− 2 = 1

−A = 3 =⇒ A = −3

f(x) = −3 3
√
x− 1− 2

Example 2 Identify the function g represented in the graph below.

y = −4

x = −3

−4.667

−3.5 x
y

hyperbola =⇒ g(x) = A
x−h + k

asymptotes =⇒ g(x) = A
x+3 − 4

g(−3.5) = A
−0.5 − 4 = 0

A
−0.5 = 4 =⇒ A = −2

g(x) = −2
x+3 − 4
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9.2 Algebraic Combinations of Functions

By functions in a variety of ways, we can create . The

simplest thing we can do is to , or functions.

• If h = f + g, then h(x) = f(x) + g(x) for each value of x.

• If h = f − g, then h(x) = f(x)− g(x) for each value of x.

• If h = f · g, then h(x) = f(x)g(x) for each value of x.

Note that for each of these cases, h(x) is only if both f(x) and g(x) are .
This means that the of h is the of the of f and g.

We can also functions.

• If h = f/g, then h(x) =
f(x)

g(x)
for each value of x.

In this case, we need to remember that we can’t divide by . So h(x) is only
if both f(x) and g(x) are , and g(x) ̸= 0.

Example 1 Complete the table.

x −2 −1 0 1 2 3 4

f(x) undef 2 6 0 1 3 −2

g(x) 3 0 2 4 undef 1 −2

(f + g)(x) undef 2 8 4 undef 4 4
(f − g)(x) undef 2 4 4 undef 2 0
(f · g)(x) undef 0 12 0 undef 3 4
(f/g)(x) undef undef 3 0 undef 3 1

Example 2 State the domains of all of the functions in example 1.

domain of f = {−1, 0, 1, 2, 3, 4}

domain of g = {−2,−1, 0, 1, 3, 4}

domain of (f + g) = domain of (f − g) = domain of (f · g) = {−1, 0, 1, 3, 4}

domain of (f/g) = {0, 1, 3, 4}
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Example 3 State the rule for h = f + g if f(x) = ln(x+ 3) and g(x) =
1

x− 5
. Find the domains

of f , g and h.

h(x) = ln(x+ 3) +
1

x− 5

domain of f = (−3,∞)

domain of g = R\ {5}

domain of h = (−3, 5) ∪ (5,∞)

In the previous example, the domain of the combined function could be identified from its rule as
the implied domain.

In the following examples, we’ll find that the domain of the combined function is different from the
domain implied by its rule.

Example 4 Find and simplify the rule for w = u · v if u(x) = 1

x+ 1
and v(x) = x3 +3x2 +3x+1.

Find the domains of u, v and w.

w(x) = u(x)v(x)

=
1

x+ 1
(x3 + 3x2 + 3x+ 1)

=
1

x+ 1
(x+ 1)3

= (x+ 1)2

domain of u = R\ {−1}

domain of v = R

domain of w = R\ {−1}

(implied domain is R)

Example 5 Find and simplify the rule for h = f/g if f(x) = (x+ 3)e−x and g(x) = x2 − 4x− 21.
Find the domains of f , g and h.

h(x) =
f(x)

g(x)

=
(x+ 3)e−x

x2 − 4x− 21

=
(x+ 3)e−x

(x+ 3)(x− 7)

=
e−x

x− 7

domain of f = R

domain of g = R

domain of h = R\ {−3, 7}
(implied domain is R\ {7})
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9.3 Function Composition
Another way to combine functions is , which means using the of one

function as the of another. The of f and g is denoted f ◦ g, and the
function is defined as

(f ◦ g)(x) = f [g (x)]

Note that the matters, because f and g results in a different function.

(g ◦ f)(x) = g [f (x)]

Example 1

a) Complete the mapping diagram
for g ◦ f .

b) Are there any values for which
f ◦ g is defined?

No, the range of g and
the domain of f share no
values, so f [g (x)] is always
undefined.

3

4

5

6

1

2

3

4

-2

-1

0

1

U f : U → V V g : V → W W

g ◦ f : U → W

Example 2 Use the function definitions to evaluate the compositions.

x f(x)

0 4

1 3

2 0

3 1

4 5

5 6

6 2
1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

g(x) (f ◦ g)(5) = f [g (5)]

= f(2)

= 0

(g ◦ f)(3) = g [f (3)]

= g(1)

= 4
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(f ◦ g)(6) = f [g (6)]

= f(1)

= 3

(f ◦ f)(0) = f [f (0)]

= f(4)

= 5

(g ◦ f)(2) = g [f (2)]

= g(0)

= 3

(g ◦ g)(3) = g [g (5.5)]

= g(5.5)

= 1.5

(g ◦ g)(2) = g [g (2)]

= g(5)

= 2

(f ◦ g)(3) = f [g (3)]

= f(5.5)

is undefined

Example 3 f(x) = x2 + 2x and g(x) = 3x− 5. Find g ◦ f and f ◦ g.

(g ◦ f)(x) = g [f (x)]

= g(x2 + 2x)

= 3(x2 + 2x)− 5

= 3x2 + 6x− 5

(f ◦ g)(x) = f [g (x)]

= f(3x− 5x)

= (3x− 5)2 + 2(3x− 5)

= 9x2 − 30x+ 25

+ 6x− 10

= 9x2 − 24x+ 15

Example 4 f : [−3, 6]→ R where f(x) = x2, and g : (0, 11)→ R where g(x) = x− 7. Find f ◦ g,
and find its domain and range.

(f ◦ g)(x) = f [g (x)]

= f(x− 7)

= (x− 7)2

If x is in the domain of f ◦ g, then
g(x) is in the domain of f :

−3 ≤ g(x) ≤ 6

−3 ≤ x− 7 ≤ 6

4 ≤ x ≤ 13

Also, x must be in the domain of g:

domain of f ◦ g = [4, 13] ∩ (0, 11)

= [4, 11)

f ◦ g has a vertex at (7, 0), and
endpoints at (4, 9) and (11, 16)

range of f ◦ g = [0, 16)
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Composition with the Inverse

With , we can show that two functions are , using the following
theorem.

Theorem

f : A→ B and f−1 : B → A are functions
iff (f−1 ◦ f)(x) = f−1 [f (x)] = x for every x ∈ A

and (f ◦ f−1)(x) = f
[
f−1 (x)

]
= x for every x ∈ B

Example 5 Show that f(x) = 5ex − 8 and g(x) = ln
[
1
5 (x+ 8)

]
are inverses.

g [f (x)] = g (5ex − 8)

= ln
[
1
5 (5e

x − 8 + 8)
]

= ln
[
1
5 (5e

x)
]

= ln (ex)

= x

Example 6 Show that f : [4,∞) → R where f(x) = x2 − 8x + 21 and g(x) =
√
x− 5 + 4 are

inverses.

f [g (x)] = f
(√

x− 5 + 4
)

=
(√

x− 5 + 4
)2 − 8

(√
x− 5 + 4

)
+ 21

=
√
x− 5

2
+ 2 · 4

√
x− 5 + 42 − 8

√
x− 5− 32 + 21

= x− 5 + 8
√
x− 5 + 16− 8

√
x− 5− 32 + 21

= x
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9.4 Piecewise Functions
We previously discussed piecewise functions in section 2.5, but only considered functions with

pieces. In general, any function can be a piece of a piecewise function. For this course,
we’ll include and pieces.

Example 1 Evaluate each of the following using the function f .

f(x) =


x2 + 2 0 ≤ x < 3

16 · 2−x 3 ≤ x < 6

−x+ 11 6 ≤ x < 10

f(1) = (1)2 + 2

= 3

f(8) = −8 + 11

= 3

f(5) = 16 · 2−5

= 0.5

f(6) = −(6) + 11

= 5

f(3) = 16 · 2−3

= 2

f(10) is undefined

Example 2 For function f above, plot its graph and find its domain and range.

5 10

5

10

x

y

Domain:

[0, 3) ∪ [3, 6) ∪ [6, 10)

= [0, 10)

Range:

[2, 11) ∪
(
1
4 , 2

]
∪ (1, 5]

=
(
1
4 , 11

)
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Example 3 Consider the function g defined as

g(x) =


x2 − 8x+ 12 1 < x ≤ 5

−3 5 < x < 8

−x2 + 20x− 99 8 ≤ x ≤ 13

a) Find the zeros of g.
For x ∈ (1, 5],

x2 − 8x+ 12 = 0

(x− 2)(x− 6) = 0

x = 2 or ����x = 6

For x ∈ (5, 8), −3 ̸= 0
For x ∈ [8, 13),

−x2 + 20x− 99 = 0

−(x− 9)(x− 11) = 0

x = 9 or x = 11

Zeros are 2, 9, 11

b) Find the intervals g is increasing,
decreasing, or constant.

For x ∈ (1, 5], parabola is upright with
a vertex at x = 4.

For x ∈ [8, 13), parabola is inverted
with a vertex at x = 10.

Increasing on (4, 5) ∪ (8, 10)

Constant on (5, 8)

Decreasing on (1, 4) ∪ (10, 13)

Example 4 Find the function h represented in the graph below.

5 10

5

10

x

y Quadratic: Vertex at (0, 4), passes through
(−2, 0) =⇒ y = −x2 + 4.

Linear: m = −2, b = 6 =⇒ y =
−2x+ 6

Exponential: doubling =⇒ b = 2, passes
through (3, 1) =⇒ y = 1

8 · 2
x

g(x) =


−x2 + 4 −2 < x ≤ 0

−2x+ 6 0 < x < 2
1
8 · 2

x 8 ≤ x ≤ 13

162 © 2020 Shaun Carter v. 0.3



Algebra 2 Notes

Chapter 10

Matrices

10.1 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.2 Solving Linear Systems with Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

© 2020 Shaun Carter v. 0.3 163



Chapter 10 Matrices Algebra 2 Notes

10.1 Matrix Operations

A (plural ) consists of numbers arranged into and
in a rectangle. It is typical to assign them variables, and to surround them

with .1

For example,

A =

[
3 7 −2
9 −4 1

]

The of a matrix denote the number of , m, by the number of ,
n, which we write as , and read as .

For example, the of A above are , or we say A is a .

The individual of a matrix are denoted by , where a is the lower case letter

corresponding to the matrix variable, i indicates which , and j indicates which .

Example 1 Write the following using A above.

a1,2 = 7 a2,1 = 9 a1,3 = −2

A matrix with the same number of and , or an , is
called a .

An is a square matrix with along its (top-left to

bottom-right), and everywhere else. If the is n× n, it is denoted
In.

Example 2 Write down I3.

I3 =

1 0 0
0 1 0
0 0 1


Example 3 If B = I7, find b4,2 and b5,5.

Because the row and column don't match, b4,2 is not on the diagonal, so b4,2 = 0.

Meanwhile, b5,5 is on the diagonal, so b5,5 = 1.
1Some mathematicians prefer to use parentheses.
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Adding and SubtractingMatrices

Matrices can be added or subtracted by adding or subtracting individual in
. This is only possible if the matrices have the same

, and the resulting matrix will also have the same .

Example 4 If C =

[
3 6
−5 1

]
and D =

[
−7 8
2 −4

]
, find C +D and C −D.

C +D =

[
−4 14
−3 −3

]
C −D =

[
10 −2
−7 5

]

Multiplying aMatrix and a Scalar

To distinguish them from matrices, individual numbers are called .

A cannot be added to or subtracted from a matrix, but it can be . To

do so, we multiply each in the matrix by the scalar. The result is a with
the same as the original matrix.

Example 5 Using A =

[
3 7 −2
9 −4 1

]
, find −5A.

−5A =

[
−15 −21 10
−45 20 −5

]

Example 6 Find 3D − 4C, using C and D above.

3D − 4C =

[
−21 24
6 −12

]
+

[
−12 −24
20 −4

]
=

[
−33 0
26 −16

]
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10.2 Solving Linear SystemswithMatrices
We can take a system of linear equations at write them as a single matrix equation:


a1,1x + a1,2y + a1,3z = b1
a2,1x + a2,2y + a2,3z = b2
a3,1x + a3,2y + a3,3z = b3

←→ AX = B

where A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 X =

xy
z

 B =

b1b2
b3


Then we can solve the matrix equation. The techniques used are beyond the scope of this course,
and tedious to perform by hand anyway, but are simple for a calculator.

Reduced Row Echelon Form

Step 1: Write matrices A and B together, which is called an matrix.

[
A B

]
=

a1,1 a1,2 a1,3 b1
a2,1 a2,2 a2,3 b2
a3,1 a3,2 a3,3 b3


Step 2: Apply the operation to the matrix using a calculator. This applies a series of
operations which are equivalent to solving the system using the elimination method.

Step 3: Interpret the solution from the resulting matrix.

Example 1 Solve 
x+ y + z = 6

2x− y + 3z = 11

−x+ 3y + 4z = 8 1 1 1 6
2 −1 3 11
−1 3 4 8

 rref−−→

1 0 0 3
0 1 0 1
0 0 1 2


x = 3 y = 1 z = 2

Notice that A has been replaced with the . This will always happen if there

is a to the system. If not, then the matrix takes a different form.
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Example 2 Solve 
5x− 3y + z = −5
2x+ y + 3z = 9

7x− 2y + 4z = 12

5 −3 1 −5
2 1 3 9
7 −2 4 12

 rref−−→

1 0 10/11 0
0 1 13/11 0
0 0 0 1


Last line implies 0 = 1, which is impossible, so no solution.
Example 3 Solve 

5x− 3y + z = −5
2x+ y + 3z = 9

7x− 2y + 4z = 4

5 −3 1 −5
2 1 3 9
7 −2 4 4

 rref−−→

1 0 10/11 2
0 1 13/11 5
0 0 0 0


The system is still consistent, but doesn't specify a unique solution, so infinitely many
solutions.

Determinants

An important property of a is its . It is denoted by

replacing the brackets around the matrix. The of a matrix
A can be written or .

Determinant

The determinant of a 2× 2 matrix is given by∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

The determinant can be found for larger n× n matrices, but becomes much more complicated. It
is much easier to find using a calculator.
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Example 4 Find the following determinants.∣∣∣∣−3 2
4 −1

∣∣∣∣ = −3(−1)− 2 · 4

= 3− 8

= −5

∣∣∣∣−1 −43 2

∣∣∣∣ = −1 · 2− (−4) · 3

= −2 + 12

= 10

The following result is particularly useful for linear systems.

Theorem

A linear system, written in the matrix form AX = B,

has a iff

|A| ̸= 0

Example 5 Confirm the nature of the solutions for the systems in the earlier examples.

For example 1: ∣∣∣∣∣∣
1 1 1
2 −1 3
−1 3 4

∣∣∣∣∣∣ = −19 =⇒ unique solution

For examples 2 and 3:∣∣∣∣∣∣
5 −3 1
2 1 3
7 −2 4

∣∣∣∣∣∣ = 0 =⇒ no unique solution
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11.1 Introduction to Sequences and Series

Sequences

A is a collection of mathematical objects (in this class, numbers) in a specific

. Unlike in , the numbers in a may be .

Example 1 The sequence of all positive odd integers less than 20, in descending order, is

19, 17, 15, 13, 11, 9, 7, 5, 3, 1

The individual entries in a sequence are known as . Each can be identified
using a lower case letter (we’ll typically use ) with a indicating its position in
the sequence.

Example 2 Find each of the following for the sequence above.

a1 = 19 a3 = 15 a6 = 9 a10 = 1

If a sequence ends after a certain number of terms, it is . Otherwise, it is .

While any numbers can be placed in an order to form a sequence, we’re particularly interested in
sequences which can be formed using a .

Explicit Rules

An calculates the value of each term using its position in the sequence.

Example3 Calculate the first 6 terms of the
sequence an = n2 + 1.

2, 5, 10, 17, 26, 37, . . .

n calculation an

1 (1)2 + 1 2

2 (2)2 + 1 5

3 (3)2 + 1 10

4 (4)2 + 1 17

5 (5)2 + 1 26

6 (6)2 + 1 37
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Recursive Rules

The word refers to definitions or processes which refer to themselves in some way.
A calculates the value of each term using the values of the previous term,
or possibly multiple previous terms.

If we think of an as the term, then an−1 is the term, and an+1 is the

term.

These rules require at least one , a term that isn’t defined .

Example4 Calculate the first 6 terms of the
sequence an = 2an−1 − 3, with a1 = 5.

5, 7, 11, 19, 35, 67, . . .

n calculation an

1 5

2 2(5)− 3 7

3 2(7)− 3 11

4 2(11)− 3 19

5 2(19)− 3 35

6 2(35)− 3 67

Example 5 List the first 10 terms of the Fibonacci sequence, defined as fn = fn−2 + fn−1, with
f1 = f2 = 1.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Types of Sequences

An has a constant between consecutive terms:

d = an+1 − an

A has a constant between consecutive terms:

r =
an+1

an
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Example 6 Determine whether the following sequences are arithmetic, geometric or neither.

1, 5, 9, 13, 17, 21, . . . arithmetic, as d = 4

12, 6, 3, 1.5, 0.75, 0.375, . . . geometric, as r = 1
2

1, 2, 6, 24, 120, 720, . . . neither, as 6− 2 ̸= 2− 1, 62 ̸=
2
1

8, 8, 8, 8, 8, 8, . . . both, as d = 0, r = 1

Sums and Sigma Notation

Recall that the of a collection of numbers is the result obtained by them.

Example 7 Find the sum of 2, 4, 6, 8, 10 and 12.

2 + 4 + 6 + 8 + 10 + 12 = 42

We can write this sum more concisely using the upper case Greek letter , Σ.

6∑
k=1

2k = 42

• Below Σ, we have the , k, and its , 1.

• Above Σ, we have the of the indexing variable, 6.

• After Σ, we have the quantity to be summed, which is the indexing variable in
this case.

Example 8 Evaluate
5∑

k=1

k2.

5∑
k=1

k2 = 12 + 22 + 32 + 42 + 52

= 1 + 4 + 9 + 16 + 25

= 55
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Example 9 Write 5 + 10 + 15 + 20 + · · ·+ 100 using sigma notation.

20∑
k=1

5k

Series

A is the sum of the first n terms of a sequence1, which can be written as

Sn =
n∑

k=1

ak

= a1 + a2 + · · ·+ an

Example 10 For an = 3n+ 5, find S8.

S8 = 148

n calculation an Sn

1 3(1) + 5 8 8

2 3(2) + 5 11 19

3 3(3) + 5 14 33

4 3(4) + 5 17 50

5 3(5) + 5 20 70

6 3(6) + 5 23 93

7 3(7) + 5 26 119

8 3(8) + 5 29 148

Example11 For an = 4an−1−7 with a1 = 3,
find S5.

S8 = 239

n calculation an Sn

1 3 3

2 4(3)− 7 5 8

3 4(5)− 7 13 21

4 4(13)− 7 45 66

5 4(45)− 7 173 239

1Mathematicians usually call this a partial sum, and reserve the word series for an infinite sum.
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11.2 Arithmetic Sequences and Series

Recall that an has a constant between consecutive
terms:

d = an+1 − an

Theorem

The recursive rule for an arithmetic sequence with difference d is

an = an−1 + d

Example 1 Find the recursive rule for the sequence 5, 2,−1,−4,−7, . . .

an = an−1 − 3, a1 = 5

Example 2 An arithmetic sequence begins with −2 and 4. State its recursive rule and find the
first 8 terms of the sequence.

d = 6 =⇒ an = an−1 + 6, a1 = −2

−2, 4, 10, 16, 22, 28, 34, 40, . . .

We can use the recursive rule repeatedly to find expressions for the terms following a1.

a2 = a1 + d a3 = a2 + d

= a1 + 2d

a4 = a3 + d

= a1 + 3d

a5 = a4 + d

= a1 + 4d

Theorem

The explicit rule for an arithmetic sequence with difference d and first
term a1 is

an = (n− 1) · d + a1

The related function f(n) = an is .
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Example 3 Find the 50th term of the sequence 1, 5, 9, 13, 17, . . .

a1 = 1, d = 4 =⇒ an = (n− 1) · 4 + 1

=⇒ a50 = 49 · 4 + 1 = 197

Example 4 In the sequence an = an−1 − 9, a1 = 500, which term is equal to 221?

d = −9 =⇒ an = (n− 1) · (−9) + 500 = 221

−9(n− 1) = −279
n− 1 = 31

n = 32

So the 32nd term of the sequence is 221.
Theorem

The finite series of an arithmetic sequence given by an is

Sn = n · a1 + an
2

Example 5 For an = an−1 − 4, a1 = 88, find the sum of the first 40 terms.

d = −4

an = (n− 1)(−4) + 87

a40 = 39(−4) + 88

= −68

S40 = 40 · a1 + a40

2

= 40 · 88− 68

2
= 40 · 10
= 400

Example 6 Find the sum of the odd numbers between 0 and 200.

a1 = 1, d = 2

an = (n− 1) · 2 + 1 = 199

2(n− 1) = 198

n− 1 = 99

n = 100

S100 = 100 · 1 + 199

2
= 100 · 100
= 10000
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11.3 Geometric Sequences and Series
Recall that a has a constant between consecutive terms:

r =
an+1

an

Theorem

The recursive rule for a geometric sequence with ratio r is

an = r · an−1

Example 1 Find the recursive rule for the sequence 1
18 ,

1
3 , 2, 12, 72, . . .

an = 6an−1, a1 =
1
18

Example 2 An geometric sequence begins with −2 and 4. State its recursive rule and find the first
8 terms of the sequence.

r = −2 =⇒ an = −2an−1, a1 = −2

−2, 4,−8, 16,−32, 64,−128, 256, . . .

We can use the recursive rule repeatedly to find expressions for the terms following a1.

a2 = r · a1 a3 = r · a2
= r2 · a1

a4 = r · a3
= r3 · a1

a5 = r · a4
= r4 · a1

Theorem

The explicit rule for a geometric sequence with ratio r and first term a1

is
an = a1 · rn−1

The related function f(n) = an is .
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Example 3 Find the 12th term of the sequence 640, 320, 160, 80, . . .

a1 = 640, r = 1
2 =⇒ an = 640 ·

(
1
2

)n−1
=⇒ a12 = 640 ·

(
1
2

)11
= 5

16

Example 4 Which term of the sequence an = 5an−1, a1 = 3 is the first to be greater than 1 billion?

r = 5 =⇒ an = 3 · 5n−1 > 109

5n−1 > 109

3

n− 1 > log5
(
109

3

)
= 12.19

n > 13.19

a14 = 3.662× 109

Theorem

The finite series of a geometric sequence given by an is

Sn = a1 ·
1− rn

1− r

Example 5 For an = 1
2an−1, a1 = 100, find the sum of the first 8 terms.

r = 1
2

S10 = 100 ·
1−

(
1
2

)8
1− 1

2

= 199.22

Example 6 If the sum of the first 4 terms of an = 3an−1 is 480, what are those 4 terms?

r = 3

S4 = a1 ·
1− 34

1− 3
= 40a1 = 480

a1 = 12, a2 = 36, a3 = 108, a4 = 324
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12.1 Statistical Concepts

In the field of statistics, a is a characteristic of a person or thing, which can have
different values for each person or thing. A recorded value of a variable is called a , the
plural of which is . The two main types of variables are

• , whose data are numerical values for which it makes sense to
use with arithmetic operations, and

• , whose data place the people or things into groups or categories.

In this class, we’ll mostly focus on quantitative variables and data.

Example 1 Decide if the following are quantitative or categorical.

• The salary of a software engineer.

• The fur color of a pet cat.

• The zip code of a customer.

• The weight of a football player.

• The number of students in an Algebra 2 class.

In this section, we’ll focus on , which is data for a single variable.

A is a single measure which summarizes a characteristic of a collection of data.

Measures of Central Tendency

A is a statistic which uses a single number to represent
an entire set of data.

• The is the sum of the data values
divided by their number:

x̄ =
total
count =

∑
x

n

• The is the value in the when the data are ordered, or the
of the middle two values.

• The is the value.
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Example 2 Find the mean, median and mode of 2, 3, 3, 3, 4, 7, 7 and 11.

2,

mode = 3︷ ︸︸ ︷
3, 3, ︸︷︷︸
median = 3.5

3, 5, 7, 7, 11

x̄ =
2 + 3 + 3 + 3 + 4 + 7 + 7 + 11

8

=
40

8
= 5

Measures of Spread

A is a statistic which indicates how far the data from

the .

• The measures spread using the
differences of each value from the mean, and is
calculated with the formula:

s2 =

∑
(x− x̄)2

n− 1

• The is the square
root of the , and is used more often
as it shares the same as the data:

s =

√∑
(x− x̄)2

n− 1

• The is the difference between the smallest and largest values.

• The , or , is the difference between Q1 and Q3, which are
the medians of the lower and upper halves of the data respectively.

Example 3 Find the standard deviation of the values in the previous example.

x̄ = 5∑
(x− x̄)2 = 66

s =

√∑
(x− x̄)2

n− 1

=

√
66

7

= 3.071

x x− x̄ (x−x̄)2

2 −3 9

3 −2 4

3 −2 4

3 −2 4

4 −1 1

7 2 4

7 2 4

11 6 36
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Skewed Distributions

Examining a representing a set of univariate data can reveal characteristics of the
data.

If the bulk of the data is situated toward one end of its range, the data is said to be .
The direction of the is the same as the direction of the distribution’s .

positively skewed
or rightskewed

mean > median

symmetric
not skewed

mean ≈ median

negatively skewed
or leftskewed

mean < median

The is affected by skewed values more than other measures of central tendency, so the
relationship between and can indicate the direction of any skewness.

Unimodal andMultimodal Distributions

Data distributions can also be characterized by the number of . It is typical to use the

suffix to refer to these, even if the peaks do not have the same height, and therefore do
not strictly meet the definition of the .

unimodal bimodal trimodal

Distributions with more than one peak can also be called .
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12.2 Normal Distributions
A is a type of probability distribution. Each normal distribution is
defined by two :

• The , represented by µ (lower case Greek letter mu).

• The , represented by σ (lower case Greek letter sigma).

The normal distribution can be graphed using a , which is sometimes called a
-shaped curve. The area under the curve can be interpreted as probabilities in the related

normal distribution.

µ
−
3σ

µ
−
2σ

µ
−
σ µ

µ
+
σ

µ
+
2σ

µ
+
3σ

• The distribution is , as it has one mode at the .

• The distribution is about the . of the area is less than

the , and is greater than the .

• The 68-95-99.7 rule states that

◦ about of the area is within standard deviation of the mean,

◦ about of the area is within standard deviations of the mean, and

◦ about of the area is within standard deviations of the mean.

If a univariate data set is and , then it may be appropriate to use

a normal distribution to the data. We can fit the distribution to the data by choosing
parameters

µ = x̄ σ = s

Note the different symbols for mean and standard deviation. While we often choose them to have
the same values, they have different meanings. x̄ and s are the calculated from the

, while µ and σ are the of the distribution.
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If X is a random variable, then we can use the notation

P (a < X < b)

to represent:

• The of individuals whose values which fall between a and b.

• The that an individual chosen at random has a value between a and b.

Example 1 The heights of a group of students are normally distributed with a mean of 5 ft 9 in
and a standard deviation of 1.5 in.

a) Find the proportion of students whose heights
are between 5 ft 7.5 in and 6 ft.

Let X be the height of a student.

µ = 69 in σ = 1.5 in

P (67.5 < X < 72) = 68% + 13.5%
= 81.5%

64.5 66 67.5 69 70.5 72 73.5

b) Find the probability that a randomly chosen
student is taller than 5 ft 6 in.

P (X > 66) = 13.5% + 34% + 50%
= 97.5%

64.5 66 67.5 69 70.5 72 73.5

Example 2 In a normally distributed data set, 84% of the data values are less than 29, and 2.5%
of the data values are less than 17. What are the mean and standard deviation?{

µ+ σ = 29

µ− 2σ = 17

Subtracting the equations gives 3σ = 12

=⇒ σ = 4 =⇒ µ = 25
64.5 66 67.5 69 70.5 72 73.5
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12.3 Bivariate Data
When data is collected for two variables from the same set of subjects, it is called

. In these cases, our interest is in knowing if there is an
between the variables, which means that changes in one variable tend to occur with changes in the
other.

Review of Regression

A key tool we have for examining bivariate data is , as we’ve studied previously.

While we’ve used , and regression, and we’ll continue
to restrict ourselves to those three for this class, regression is possible using any type of function
for which an association could exist.

Recall:

• The aim of is to find a which an
between variables.

• The , denoted by , is a number between 0 and
1 indicating how well the fits the data, with indicating a perfect fit.

• The , denoted by , is a number between −1 and 1 which
indicates the and of the linear association between the two

variables. For linear regression, .

Example 1 Find a function to model the data below.

x 1.0 1.5 2.0 2.5 3.0 3.5 4.0
y 5.0 4.3 3.9 3.7 4.1 5.0 6.3

Shape formed by points suggests quadratic.

Using quadratic regression,

R2 = 0.992 indicates good fit.

f(x) = 0.84x2 − 3.82x+ 8.06

x

y
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Correlation and Causation

measures a linear relationship between variables by indicating how one variable
changes as the other variable increases.

If increases in one variable sees proportionally similar in the other, there is a
between the variables, and r is close to . If increases in

one variable sees proportionally similar in the other, there is a
between the variables, and r is close to . In both

cases, there is a between the variables.

Suppose that there are two variables, X and Y , which have a .
As stated above, this means that as X increases, Y also increases at a proportionally similar rate.
This does not mean, however, that an increase in X an increase in Y . There are
actually three possibilities:

• Changes in X do indeed changes in Y .

• The causation is , and changes in Y changes in X.

• Changes in X and Y are both by changes in a .

Not understanding this (or deliberately ignoring this) leads many people to make
not supported by the data. As you hear or read statistical conclusions made by others, or are trying
to draw your own conclusions, it is vital to remember this principle:

Correlation vs. Causation

Correlation does not imply causation.
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Example 2 This graph and the
correlation coefficient r = 0.7485 show
that there is a fairly strong positive
correlation between the number of
broadband internet subscriptions in a
country and the life expectancy in that
country.

Is it reasonable to say that if a
country wants to raise life expectancy,
they should improve their internet
infrastructure?

Life Expectancy vs. Broadband Internet
Subscribers by Country, 2017
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Sources:
https://data.worldbank.org/indicator/IT.NET.BBND.P2
http://gapm.io/ilex

No, as the correlation does not imply that broadband internet causes an improved
life expectancy. It is more likely that increases in both variables are caused by
increases in the wealth of the country.

Discrete and ContinuousModels

A quantitative variable which can take only distinct, countably-many values is called .
These values generally arise from a process.

A quantitative variable which can take any value within an interval is called .
These values generally arise from a process.

Distinguishing between the two is important for deciding how to create graphs modeling the
variable.

Example 3 A local car dealer promises to sponsor the high school softball team $500, plus $150 for
each run they score in the next game, up to a total sponsorship of $2000. Create a graph relating
sponsorship money to runs scored.

Independent Variable: runs scored
Dependent Variable: sponsorship money

Discrete/Continuous: discrete
Domain: {0, 1, 2, . . .}
Function:

f(x) =

{
150x+ 500 x = 0, 1, . . . , 10

2000 x = 11, 12, . . . 5 10 15

500

1,000

1,500

2,000

x

y
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12.4 Collecting and Presenting Data

The aim of is to understand about the world through the collection and
interpretation of . Every day, people form and make based on
the data that have been presented to them.

Unfortunately, data can be in ways that make them , or can be
in ways that are . While some people will data

in these ways deliberately, it is very easy to misuse data. Knowing how data can

be misinterpreted helps us to avoid being by claims made by others, and to better
the data we collect ourselves.

Populations and Samples

If we’re interested in data regarding a particular class of people or things, the is
the entire set of people or things in that class.

Example 1 A medical researcher is collecting data about the weights of 15 year olds in Oklahoma.
What is the population?

The population is the set containing every 15 year old in Oklahoma.

If data are collected from every individual in the population, the process is called a .
This is ideal, as we know that the data truly represents the entire population. However, doing so
is often impractical.

Instead, data are typically collected from a , which is a subset of the population which

is intended to represent the entire population. The sample should contain a number of
individuals to minimize the effect of random variation.

There are many different methods to select the sample, with varying quality. Here are a few
common sampling methods:

• A selects the members of the sample from the entire population
at random. This is usually best practice if possible. This can be as simple as drawing names
from a hat, or can be done by assigning numbers to each individual and using a random
number generator.

• A places individuals into groups, then randomly selects members
from every group. This ensures that every group is represented in the sample.

• A places individuals into groups, then selects every member from
randomly selected groups. This is often easier to administer, while still containing some
randomness in the sample.
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• A selects individuals who are willing to participate
in a survey. Sometimes this is the only way to collect data, for legal or ethical reasons, but
may introduce .

• A selects the individuals who are easiest to collect data from.

This almost certainly introduces . While this is a popular method because
it is easy, informed statisticians should not use it.

Any factor that affects the data in a way such that they do not represent the true state of the
population is called a . If the source of the is the way the sample was selected, it
is called . Other include , which is where the

presence of an affects the behavior or response of individuals in the sample.

Example 2 A business manager at a large company is concerned that many of her employees are
spending a lot of time using social media when they should be working. She asks her assistant
manager to conduct some research. He asks the first five people into the office the next day how
much time they’ve wasted on social media. He reports to his boss that there is no social media
problem at the company.

Are there any issues regarding the data collection in this scenario?

Small sample: In a large company, five people is not representative of the population
of employees.

Convenience sample: The assistant manager didn't use random sampling at all. It
may be the case that these employees are earliest because they are relatively
busy, and have less time to waste.

Observer bias: Employees are unlikely to admit to management the amount of time
they've wasted online when they should have been working.

Recognizing Distorted Data Displays

Presenting data in a is a useful way to communicate and emphasize aspects of the data
that are important to the author of the display. Unfortunately, it is possible to present data in
ways that, while not false, are .

An important rule to remember when presenting data is the . This says that
if a quantity is represented by a two-dimensional region in a graph, the of the region
should be to the quantity.
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Example 3

This chart violates the

because the bars do not have the same .
Even though Company A does have the highest
growth, the difference in growth to
be much greater because the bar’s is
much greater.

In general, the bars in a bar chart should all have
the same .
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Company A is the fastest growing!
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Example 4

This chart violates the ,

because the on the pie chart
causes some of the sectors to have additional

along the edge.

While they might look clever, using
in data displays should

always be .

Example 5

This chart violates the

because the of the bars are

not to their corresponding

. Even though Jones does have the
highest favorability, the difference in favorability

to be much greater because the
bar’s is much greater.

This occurs because the on the
has been .
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Candidate Jones is far more popular!

Garcia Jones Lee Smith

40

41

42

A graph such as a line chart can also have a . In some cases, this is

when seeing trends and small changes is important, such as in .

In general, however, readers will expect a scale beginning at .
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